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Abstract— Interactive traffic simulation is crucial to au-
tonomous driving systems by enabling testing for planners in a
more scalable and safe way compared to real-world road testing.
Existing approaches learn an agent model from large-scale
driving data to simulate realistic traffic scenarios, yet it remains
an open question to produce consistent and diverse multi-
agent interactive behaviors in crowded scenes. In this work,
we present InterSim, an interactive traffic simulator for testing
autonomous driving planners. Given a test plan trajectory
from the ego agent, InterSim reasons about the interaction
relations between the agents in the scene and generates realistic
trajectories for each environment agent that are consistent with
the relations. We train and validate our model on a large-
scale interactive driving dataset. Experiment results show that
InterSim achieves better simulation realism and reactivity in
two simulation tasks compared to a state-of-the-art learning-
based traffic simulator.

I. INTRODUCTION

With the recent development of autonomous driving tech-
nologies, traffic simulation has played an important role
in enabling testing the planner system on a large scale.
Compared to real-world road testing, simulation offers a
more time and resource efficient alternative by reconstructing
rare but important traffic scenarios. More importantly, it
allows simulating risky scenarios that are usually difficult
to obtain in real-world driving.

Traditional simulators often rely on static log replay that
simulates the agent behavior based on what happened in
the collected data. It fails to produce reactive behavior of
environment agents when the ego plan diverges from the
original log and thus becomes less useful in interactive
scenarios. On the other hand, heuristic-based models, such
as the intelligent driver model (IDM) [1]–[3], produce more
reactive behaviors in response to diverging ego plans, but
they are limited to following predefined trajectories and have
difficulties in producing diverse scenarios.

Recent advances in machine learning have enabled real-
istic and diverse agent simulation by training agent models
from realistic driving data. They demonstrated great potential
in supporting closed loop planner evaluation. For instance,
[4] proposes to generate realistic driving episodes by leverag-
ing a probabilistic prediction model given traffic observations
and environmental context; [5] infers future agent states as
both discrete intent and continuous controls conditioned on
past observations over all agents. On the other hand, they
focus on simulating trajectories of individual agents without
reasoning about their future interactions, which could lead
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Fig. 1: A motivating example of InterSim. Given an updated
ego plan in red, InterSim first identifies the relevant agent
whose future trajectories may collide with the ego plan, and
infers the interacting relations between the agents, such as
the environment agent is yielding to the ego agent. It then
predicts consistent and reactive trajectories for the relevant
agent given the inferred relations. The simulator simulates
the next step of all agents based on the predictions and waits
for the new plan.

to colliding trajectories in dense traffic. To overcome this
challenge, [6] adds a task loss to penalize collisions and [7]
proposes a feasibility check on the generated trajectories
to filter out colliding trajectories. Instead of requiring a
hand-crafted loss or an ad-hoc filter, [8] offers simulation
consistency by rolling outs joint trajectories over all the
agents in a scene through an implicit latent variable learned
by a conditional variational autoencoder; however, such gen-
erative models rely on probabilistic sampling and suffer from
producing rare or dangerous scenarios, which are crucial to
testing autonomous driving planners.

In this work, we propose InterSim, an interactive traffic
simulation model that reasons about explicit interaction re-
lations when rolling out future trajectories for all agents in
a scene. As shown in Fig. 1, given an updated ego plan
in red, InterSim first identifies the relevant agents whose
future trajectory may collide with the new ego plan. Next, it
infers the interaction relations between the ego agent and the
relevant environment agents, and predicts reactive trajectories
for the relevant agents based on the relation. Finally, it
follows the predictions to simulate one step ahead for the
environment agents and repeat the same procedure until the
end of the simulation episode.

Compared to existing learning-based models, InterSim
offers a few advantages by reasoning about the explicit
interactive relations among the relevant traffic agents. First,
the relations guide the trajectory simulator to produce con-
sistent trajectories of multiple agents in complex interactive
scenarios and offer better interpretability. Second, one can
use it to manipulate an interactive scenario by specifying the
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interaction relation between agents, which is a non-trivial
task for generative models that may require a large number
of samples. Third, it affords better efficiency by identifying
only the relevant agents influenced by the ego plans and
modifying their future trajectories in simulation as opposed
to all agents.

Our contribution is as follows:
• We propose a learning-based simulation model,

InterSim, that rolls out realistic and consistent future
trajectories of multiple traffic agents based on explicit
interaction relations.

• We leverage a relation predictor to infer interaction
relations for better interpretability and simulation ef-
ficiency, and show how our simulator can be used to
manipulate different interaction situations by specifying
the relations.

• We train and evaluate our model on the Waymo Open
Motion Dataset, a publicly available real-world driving
benchmark, and demonstrate its advantage compared to
a state-of-the-art baseline in two simulation tasks.

II. RELATED WORK

In this section, we discuss relevant literature in three as-
pects: traffic simulation, behavior prediction, and interaction
modeling.

A. Traffic Simulation

Traffic simulation is an important task for intelligent
transportation systems, allowing for training and evaluating
driving models in a more scalable and safe way. Existing traf-
fic simulators render high-fidelity driving environments in the
context of racing [9] and urban driving [10], [11]. However,
they often simulate agent behaviors through heuristic-based
models that fail to cover diverse scenarios or interactions.

Recently, learning-based models have demonstrated great
success in simulating realistic and reactive agent behaviors
by learning driving patterns from real-world driving data. For
instance, [4] trains a deep neural network through a rasterized
representation derived from driving logs to simulate future
agent trajectories; [5] infers future agent intent and control
inputs to model stochastic traffic dynamics. While such
methods consider the past trajectories of all the agents at
once, they assume independence of future trajectory rollouts
that may lead to inconsistent or colliding trajectories between
simulated agents in interactive scenarios.

In order to improve simulation consistency over multiple
interacting agents, [6] leverages a collision loss and [7]
proposes a rule-based fall-back layer to discourage or avoid
collisions. While such works often require hand-crafted
losses or post-processing filters, [8] proposes a multi-agent
behavior model that simulates joint agent behaviors directly
through an implicit latent variable that governs the agent
interactions. Compared to existing models, we propose a
relation-aware simulator that simulates diverse and realistic
interactive behaviors in a more straightforward and efficient
way by explicitly modeling interacting relations.

B. Behavior Prediction

Behavior prediction offers a natural solution to simulate
agent behaviors through the predicted trajectories given the
environmental context. Recent models prove great success in
improving prediction accuracy, by learning agent dynamics
and environmental context represented either as a vector
representation [12], [13] or a rasterized image [14], [15].

Due to uncertainty in human intent, the future trajectories
are multi-modal. To handle the multi-modality and improve
prediction coverage, a family of models are proposed to first
predict high-level intent, such as goal targets [16]–[18], lanes
to follow [19], [20], maneuvers [21]–[23], and linguistic
descriptions [24], before predicting low-level trajectories that
are conditioned on the intent.

In this work, we take advantage of the goal-conditioned
models in the behavior prediction literature to simulate
realistic agent trajectories given the environmental context
and agent intent.

C. Interaction Modeling

Modeling interaction is an important task in motion pre-
diction and simulation when reasoning about multi-agent be-
haviors. While many existing approaches [?], [25]–[27] rely
on implicit latent variables to model interactions, we focus on
modeling and predicting explicit interaction relations in this
work for better interpretability. These explicit relations allow
us to produce and manipulate different types of interactive
scenarios.

In this work, we follow [28]–[30] that define agent re-
lations based on the pass and yield relationship and predict
the relationship as a classification problem through a separate
learning model. The predicted relations are useful in guid-
ing the motion predictor to generate consistent trajectories
among multiple agents, as shown by [30].

When there exist potential conflicts between a novel ego
plan and the simulated trajectories of environment agents
given the predicted relations, we adopt conflict resolution
techniques that are widely used in planning [31], search [32],
and ordering [33].

III. PROBLEM FORMULATION

We formulate the problem of learning realistic interactive
behaviors for traffic simulation following [8]. Given map
states M and the observed states S of N traffic agents in a
scene, the goal is to roll out the future states of all agents Y
up to a finite horizon T .

Due to the computational complexity and memory con-
straint in simulating joint behaviors over all traffic agents in
the scene, our model focuses on simulating agent behaviors
that are relevant to the ego plan, as the irrelevant agent
behaviors are often ignored by the ego planner. For an
irrelevant agent whose future trajectory stays the same given
a new ego plan at the next step, our simulator can simply
roll out its future trajectory from the data.

One key consideration in our problem is to faithfully
follow the agent’s origin intent as much as possible. We
define such intent based on the goal location collected from



Legends
Relevant Agents
Ego Agents
Irrelevant Agents

Influencer Reactor

Ego

Env #2
(irrelevant)

Env #1
(relevant)

Trajectories to Simulate Obtain New Ego Plan

Slowing 
down

Original Trajectory
(Env #1)

Collision Detected
(Env #1)

Goal Driven Prediction
(Env #1)

Relation Prediction
(Env #1 vs Ego)

Original Trajectory
(Env #2)

Collision Detected
(Env #2)

Goal Driven Prediction
(Env #2)

Relation Prediction
(Env #2 vs Env #1)

Trajectory 
changed

Commit New 
Trajectories and Step

Resolving Ego-Env Conflicts

…

…

Resolving Env-Env Conflicts

Fig. 2: Illustration of InterSim. In this example, given a new plan for the ego agent (in cyan) to slow down, the simulator
updates its simulated trajectories for the environment agents as follows. First, it checks for potential collisions with all
environment agents and labels colliding ones as the relevant agents in yellow1. For each relevant agent, such as Env #1, it
predicts the interaction relation and updates its trajectory based on the relation using a goal driven trajectory predictor. Second,
it resolves collisions between the newly updated trajectories of the environment agent(s) and the remaining agents (i.e. Env
#2) iteratively until all collisions are resolved. In the end, InterSim successfully generates scene consistent trajectories for
Env #1 and Env #2 to react and slow down, and commit these trajectories to simulate for the next step.

ground truth future trajectories in the data. Although this
consideration may suffer from less diverse scenarios, we
observe that most drivers do not change their long-term goals
when interacting with others (e.g., an agent turning left in
the data is unlikely to change its intent to go straight or turn
right) and we can achieve sufficient diversity by simulating
multiple options to reach the long-term goals, as we show
in the experiments.

IV. APPROACH

In this section, we describe our approach InterSim that
simulates interactive responses of environment agents given
an ego plan to be tested. We first present a high-level
overview with an illustrated example followed by detailed
explanations on conflict detection, relation-aware conflict
resolution, goal driven trajectory prediction, conflict reso-
lution between environment agents, and one-step simulation.

A. Overview

As illustrated in Fig. 2, InterSim takes the input, including
the past agent states and the environmental context, into
a rasterized representation and a vectorized representation.
Given a new ego plan (in cyan), InterSim identifies the
potential conflicts defined as the collisions between the plan
and the simulated trajectory of other agents, as shown on
the first row in Fig. 2. For the conflicting agents, InterSim
predicts their interaction relations with the ego agent and

1The simulator has already labeled some relevant agents in yellow from
the previous simulation step. In the current step, it will re-evaluate the
relevance for all agents.

updates their future trajectories or the ego plan conditioned
on the predicted relations and their intent. In cases where
the updated trajectories cause new conflicts with the other
environment agents, InterSim further updates the colliding
trajectories of these agents using the same relation prediction
and trajectory prediction procedure until all conflicts are
resolved, as shown on the second row in Fig. 2. Following
this tree-like structure to resolve collisions, InterSim is
guaranteed to produce no dead-end cases. After updating the
trajectories of all the relevant environment agents, InterSim
advances the simulation by one step and repeats this process
until the end of the simulation episode.

B. Conflict Detection

At each simulation step, the ego planner supplies a planned
trajectory that may result in conflicts with the future tra-
jectories of the environment agents from log replay or past
simulations. The conflict is defined as the collision between
agents based on their shapes represented as bounding boxes,
as customary in planning [34]. If the bounding boxes be-
tween two agents overlap at any time in the future, a conflict
is detected and requires the simulator to update the colliding
trajectories for better consistency and realism. We present
an example of conflict highlighted by the red boxes on the
top row (third to the right plot) in Fig. 2, which indicate the
collision between the ego agent and environment agent #1.

C. Relation-Aware Conflict Resolution

To resolve a collision conflict, InterSim first identifies the
relevant agents that have colliding trajectories with the ego



plan and revises their trajectories or the ego plan based on
the predicted relations between the ego and relevant agents.

In order to model the interaction relation, we define
the interactive agents as the influencer and the reactor,
as customary in [29], [30], and predict the relation as a
classification problem through a deep neural network. The
network includes a context encoder that encodes the input
using two encoder heads. The first encoder head follows
VectorNet [12] by taking observed agent trajectories and map
states as a set of polylines. For each polyline, the encoder
first runs an MLP to encode the feature of each vector
within the polyline and a graph neural network followed
by a max-pooling layer to extract the polyline feature from
accumulated vector features. The final vectorized feature
is obtained by running cross attentions between the agent
polyline features and the map polyline features. Due to the
success of rasterized representations in trajectory predic-
tion [15], we leverage a second encoder head by rasterizing
the input states into an image with multiple channels that
include the position of the agents at each past time step with
the map information and obtaining the encoded rasterized
feature through a pre-trained VGG16 [35] model. The output
of the context encoder is a concatenation of the vectorized
feature and the rasterized feature from both encoder heads.
Finally, the network predicts the probability over interaction
relations using a two-layer MLP. The relation predictor is
trained using a cross entropy loss between the predicted
probabilities and the ground truth interaction label. The label
is obtained at training time based on which agent gets to the
cross point first given their ground truth future trajectories
in the data, as in [30].

After training a relation predictor from realistic driving
data, we can resolve the collision conflict based on the
definition that the reactor is always yielding to the influencer.
Thus, we keep the trajectory of the influencer unchanged and
modify the goal of the reactor to avoid colliding with the
influencer trajectory. There exist a few options to set the goal
for the reactor, depending on the trade-off between progress
(i.e. how far the reactor travels) and simulation consistency
(i.e. how likely the agents are colliding). In this work, we
update the goal point of the reactor to the colliding point
(or the crossing point) between the trajectories as shown in
the top right plot in Fig. 2 to favor simulation consistency,
such that the agents are unlikely to collide, while ensuring
the progress to some extent.

D. Goal Driven Trajectory Prediction

We train a goal-driven trajectory predictor as a deep neural
network to help simulate realistic reactor trajectories given its
updated goal at the cross point. This predictor is also used
to roll out the agent trajectories from novel states unseen
in the dataset, or update the ego plan if the ego agent is
predicted as the reactor. This network shares the same context
encoders as the relation predictor, except that it adds an
additional channel in the rasterized representation to include
the goal point. The decoder is an MLP-based predictor head
that regresses the full trajectory conditioned on the goal.

At training time, we use the teacher forcing technique and
provide the ground truth goal point from the data. We train
the model to minimize the L2 loss between the regressed
trajectory and the ground truth future trajectory from data.

E. Conflict Resolution between Environment Agents

After modifying the trajectories to resolve the conflict
between the ego and its relevant agents, it is possible that new
collisions are created by the modified trajectories. Thus, we
follow the same conflict detection and resolution procedure
iteratively for agents whose future trajectories are colliding
with the updated trajectories until all conflicts are resolved.
In the example illustrated in Fig. 2, after InterSim updates
the trajectory of environment agent #1 to resolve its collision
with the new ego plan (see the top row), it detects a new
collision between agent #2 and the updated trajectory of
agent #1. In this case, it continues to resolve this conflict
by predicting the relations between these two agents and
updating the future trajectory of agent #2 as the reactor (see
the second row). Following this procedure, our simulator
will keep searching for the collisions given newly updated
trajectories until all conflicts are resolved. In the end, it
produces scene consistent trajectories over all agents.

F. Simulation

Given the predicted trajectories of all agents in a scene,
InterSim commits these trajectories to simulate the agent
behaviors at the next step. If the plan stays the same at
the next step, InterSim will follow the remaining predicted
trajectories at each future step, until the end of the simulation
horizon. On the other hand, if a new plan is given, it will
follow the procedures described in Sec. IV-B to Sec. IV-E to
update the environment agent trajectories when necessary.

V. EXPERIMENTAL RESULTS

In this section, we introduce the dataset and the model, and
present a series of quantitative and qualitative experiments
to demonstrate the effectiveness of our approach compared
to the baseline simulators.

A. Dataset and Model Details

We train our simulator on the Waymo Open Motion
Dataset (WOMD) [37], a large-scale driving dataset collected
from realistic traffic scenarios. More specifically, we focus
on the interactive dataset in WOMD that is mined to involve
close interactions. At test time, we evaluate our simulator
against the validation set, which includes 42, 318 challenging
scenarios. In each scenario, the simulator takes as the input
one second of the observed trajectory and the environmental
context, and simulates the agent behaviors over the next 8
seconds. We follow [8] and choose a simulation frequency
at 2Hz.

We implement our relation predictor and goal driven
trajectory predictor by following [30], a state-of-the-art
interactive trajectory predictor on the WOMD interactive
prediction benchmark. Both predictors leverage the same
context encoder headers that encode the observed trajectories



Method Relevant Ratio ADE ↓ FDE ↓ Front Collision Rate ↓ Side Collision Rate ↓ Rear Collision Rate ↓ Progress ↑

SimNet [4] 21% 8.74 16.99 0.89% 2.80% 4.97% 49.35
InterSim-M0 26% 7.26 6.19 0.57% 1.99% 9.28% 54.11
InterSim-M1 23% 8.31 6.58 0.10% 0.41% 1.00% 39.83
InterSim 23% 7.11 6.17 0.19% 0.71% 1.91% 42.85

TABLE I: Task 1 simulation performance (c.f. Sec. V-C for more details on the metrics) of InterSim and the baselines over
40k interactive scenarios, during which the ego agent is controlled by a state-of-the-art marginal predictor [36]. Compared
to the baselines, InterSim achieves the best simulation realism at the cost of small simulation reactivity by modeling explicit
interaction relations during simulation.

Method Rel. Rat. Front ↓ Side ↓ Rear ↓ Prog. ↑

SimNet [4] 9.33% 0.60% 4.55% 33.90% 46.55
InterSim-M0 11.06% 0.47% 4.90% 35.00% 50.69
InterSim-M1 10.38% 0.24% 1.98% 6.94% 26.67
InterSim 10.49% 0.30% 1.95% 7.48% 28.47

TABLE II: Task 2 simulation performance of InterSim and
the baselines over 40k interactive scenarios, during which
the ego agent follows a slowing down action, requiring the
simulator to generate reactive behaviors to avoid collisions.
Results in this more challenging task show that an explicit
collision resolution process helps decrease the collision rate
for all types of collisions by a large margin.

and environment states into a vectorized representation and a
rasterized representation. More specifically, we implement a
standard VectorNet encoder [12] following the open-source
implementations by [36]. To obtain the rasterized feature, we
generate a 224 × 224 image from the past trajectories and
the environmental context, in which each pixel represents an
area of 1m× 1m, and run a pre-trained VGG16 [35] model
as the raster encoder. The relation prediction head is a two-
layer MLP. The first layer has a hidden size of 128, followed
by a layer normalization layer and a ReLU activation layer.
The second layer outputs the distribution over the binary
interaction relations. The goal driven prediction head follows
a similar two-layer MLP, consisting of a hidden layer with a
size of 128, a layer normalization layer, a ReLU activation
layer, and an output layer that outputs the 2-D positions over
the simulation horizon. We refer to [30], [36] for additional
implementation details.

Both models are trained on the training set from WOMD
with a batch size of 64 for 30 epochs. We use an Adam
optimizer and a learning rate scheduler that decays the
learning rate by 30% every 5 epochs, with an initial value
of 1e-3.

We further introduce a few baselines to verify the effec-
tiveness of our approach, which include 1) SimNet [4] that
simulates agent trajectories using a ResNet-50 model without
reasoning about their future interactions; 2) InterSim-M0 is
a variant of our model that simulates agent trajectories but
does not resolve the collision conflicts; 3) InterSim-M1 that
is a variant of our model that resolves the collision conflict
in a conservative manner by simulating both agents to the
cross point without considering their relations, which shares
the same spirit as [7]. For each variant, we use the same
backbone as our model for a fair comparison.

B. Simulation Tasks

We propose two tasks to test the effectiveness of our
simulator. In the first task, we test its capability to generate
realistic and consistent trajectories given a proper planner.
In the second task, we test its stability against a planner that
generates novel out-of-distribution plans with respect to the
WOMD dataset. In both tasks, we randomly select the ego
agent to be one of the interactive agents labeled in the dataset
to test our simulator in highly interactive scenarios.

1) Task 1: Simulation with Respect to Proper Plans:
To test the overall performance of InterSim, we control
the ego agent using a state-of-the-art marginal trajectory
predictor [36], which was the winner of the WOMD marginal
prediction challenge. This allows us to simulate realistic ego
behaviors that closely follow the data distribution but deviate
slightly from the ego future trajectory collected in the data.
As a result, it is necessary for the simulator to adjust future
trajectories of the environment agents to react to the deviated
plan.

2) Task 2: Simulation with Respect to Novel Plans:
Learning-based models often suffer from instability given
novel inputs, such as the ego trajectories that are out of the
distribution of the training dataset. Therefore, one should
verify the stability of the simulation given novel ego plans.
In this task, we control the ego vehicle to commit a slowing
down action with a reasonable deceleration in each scene
to test the robustness of our simulator and the baselines,
which are required to produce reactive behaviors for the
environment agents, especially those behind the ego agent.
The deceleration is set to −1.5m/s2. We upper bound the
speed of the ego plan by its original speed from the dataset,
in case the ego vehicle is going to slow down with a
larger deceleration. As the slowing down action is easy to
implement and reproduce, we find it straightforward to test
and compare the performance of interactive simulators.

C. Quantitative Results

We evaluate the quantitative performance of our model
and the baselines against a few standard metrics introduced
in [4], [8], [38], including:

• Relevant ratio as the number of relevant agents whose
future trajectories are modified by the simulator over
the number of all environment agents. This measures the
density of agents that needs to be simulated in WOMD.

• Average displacement error (ADE) and final dis-
placement error (FDE) as the distance between the
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Fig. 3: Examples of InterSim successfully identifying relevant agents in challenging interactive scenarios and simulating
realistic interactive behaviors. In the first scenario from the left, our model identifies all the platooning agents in yellow that
are relevant to the ego agent plan. In the second and third scenarios, our model identifies the agents with complex interactions
during turning and merging. The planned ego trajectories and the simulated trajectories for each relevant environment agent
are drawn as dots in different colors.

simulated trajectories and the ground truth future tra-
jectories from data. These two metrics measure the
simulation realism [4] and the scenario reconstruction
ability [8].

• Collision rate as the number of the colliding agent
pairs divided by the number of simulated agents. We
follow [4] and divide the collisions into front collisions,
side collisions, and rear collisions. Such metric mea-
sures the simulation reactivity [4] and the interaction
reasoning capability [8].

• Progress as the total traveled distance of all simulated
agents divided by the number of simulated agents. This
measures the level of goal achievement [38].

The results are reported in Table I and Table II for Task 1
and Task 2, respectively. We summarize the key observations
as follows.

1) Simulation Efficiency: In both simulation tasks, we
observe a small portion (i.e. at most 26% for Task 1 and
at most 11.06% for Task 2) of relevant agents that are
influenced by the ego plan out of all environment agents.
This demonstrates that a simulator only needs to modify
a small portion of agents on the road to test a planner’s
performance to achieve better run-time efficiency. A joint
trajectory simulator such as [8], on the other hand, might
not be the most efficient method especially under time
constraints or memory limits.

2) Simulation Realism: In Task 1, we measure the sim-
ulation realism as the displacement errors, i.e. ADE and
FDE, between the simulated trajectories and the ground
truth future trajectories in the data, and observe that our
simulator achieves the lowest errors, especially compared
to SimNet that leverages a simple ResNet-50 prediction
backbone. When compared to the other two invariants using
the same prediction backbone, InterSim achieves the best
performance by reasoning about the underlying relations
between the agents.

3) Simulation Reactivity: We measure the simulation re-
activity in terms of collision rates in both tasks. In Task 1 (see
Table I), while both InterSim-M1 and InterSim achieve better
reactivity by reasoning about future interactions, InterSim-
M1 achieves the lowest collision rates as it adopts a conser-
vative approach to resolve conflicts by changing the goals
of both interactive agents to the cross point. On the other
hand, our approach InterSim resolves the conflicts by only
modifying the reactor agent and achieves a better balance
between simulation realism and reactivity.

We observe a similar pattern in Task 2 (see Table II),
in which we test the simulator with a slowing down ego
plan. Both SimNet and InterSim-M0 struggle to resolve
new conflicts and cause rear collisions in one-third of the
scenarios by simulating the rear agent to collide with the
slowing down ego agent. Despite having the lowest values
in two types of collisions, InterSim-M1 handles conflicts by
yielding both agents without really reasoning about their
interactions. On the other hand, our proposed approach
InterSim makes more progress at similar collision rate levels
by resolving conflicts via explicit interaction modeling.

4) Simulation Progress: We measure the level of goal
achievement for all the agents through the progress metric. A
good planner should control the ego agent to navigate safely
without blocking other traffic. In both tasks, we observe that
our approach achieves better progress compared to InterSim-
M1 that resolves the interaction conflicts conservatively. In
addition, we notice that the simulators tend to achieve lower
progress scores in Task 2, due to the slowing down ego
behavior.

D. Qualitative Examples

1) Realistic Behavior Simulation: In Fig. 3, we present
three representative interactive scenarios from Task 1 to
showcase InterSim. Our model successfully identifies all
relevant agents, as highlighted in yellow, in challenging
scenarios involving platooning, turning, and merging, and
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Fig. 4: An example of InterSim manipulating the interaction relationship between two agents to simulate different interaction
modalities. Top row: The model follows the predicted relation and simulates the forward agent to yield to the turning agent
who has already initiated the turn. Bottom row: The model follows a reversed relation to simulate a different scenario.

simulates their future trajectories to be consistent with the
interaction relations and the environmental context.

2) Interaction Manipulation with Perturbed Relations:
In Fig. 4, we present an example in which InterSim can be
used to manipulate the interaction relations between agents
to simulate different interactive behaviors. The simulator in
this example is used to simulate the trajectories of a forward
agent and a turning agent. On the top row, our relation
predictor predicts that the forward agent is yielding to the
turning agent who already initializes the turn. Given the
predicted relation, InterSim simulates a realistic interacting
scenario for both agents. In contrast, we can reverse the
interaction relation and simulate a different scenario, in
which the turning agent yields to the forward agent, as shown
on the bottom row. This demonstrates the advantage of our
approach that manipulates relations and simulates diverse and
rare events, compared to generative models, i.e. [8], that rely
on probabilistic sampling approaches and may require a large
number of samples to cover rare events.

E. Collisions Analysis

While our model is designed to resolve all collision
conflicts in simulation, we observe that the collision rates
in the experimental results are not eliminated to zero. We
present a couple of reasons behind such failure cases.

First, the goal driven trajectory prediction model is not
always stable and may fail given novel inputs, such as
strange observations from other agents. Such novel inputs

often cause the trajectory to overshoot and lead to a rear
collision. Second, due to noise in perception data, including
the bounding box labels and the agent positions, there exist a
few scenarios that already include collisions at the beginning
of the simulation.

VI. CONCLUSIONS

In conclusion, we present an interactive traffic simulator
InterSim that simulates realistic and reactive agent trajec-
tories with respect to the ego plan. Our simulator takes
advantage of a relation predictor to reason about the under-
lying relations between interactive agents when simulating
their future trajectories. In the experiments, we test our
simulator and the baselines with two planners, a reasonable
planner and a novel planner, to validate the advantage of our
approach. Quantitative results show that InterSim achieves
a good balance between simulation realism and reactivity,
especially in a challenging task in which the ego plan is
forced to slow down and requires the simulator to respond.
We also present a few representative examples to demonstrate
the effectiveness of InterSim in dense interactive scenarios
and its ability to manipulate agent interactions to produce
diverse and rare events.
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