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Abstract. Many recent approaches in contrastive learning have worked
to close the gap between pretraining on iconic images like ImageNet and
pretraining on complex scenes like COCO. This gap exists largely because
commonly used random crop augmentations obtain semantically incon-
sistent content in crowded scene images of diverse objects. In this work,
we propose a framework which tackles this problem via joint learning
of representations and segmentation. We leverage segmentation masks
to train a model with a mask-dependent contrastive loss, and use the
partially trained model to bootstrap better masks. By iterating between
these two components, we ground the contrastive updates in segmenta-
tion information, and simultaneously improve segmentation throughout
pretraining. Experiments show our representations transfer robustly to
downstream tasks in classification, detection and segmentation.3

1 Introduction

Many self-supervised contrastive methods have come to rival and even surpass
the performance of fully supervised methods on a number of tasks, including
object detection [3, 44], semantic segmentation [17, 41], video understanding
[23, 30], and image classification [8, 13]. A large portion of these methods rely on
random cropping to select positive pairs of image subregions for a self-supervised
instance-level discrimination task. Recently, many works have found this random
cropping strategy succeeds for iconic image pretraining, but struggles when
applied to pretraining on complex scene images. Treating two random crops from
the same image as containing semantically similar information works well for
images with singular, dominant subjects, like those in ImageNet. But such an
assumption inevitably fails due to inconsistent learning signals in scene images
full of diverse objects [9, 33, 40]. To address this issue, prior works have generated
random crops in an object-aware manner [3, 34, 44]. By localizing objects with
unsupervised algorithms (e.g. selective search), these works are able to ground
random crops around singular objects, validating the assumption that such crops
contain similar information about objects.

⋆ equal advising
3 Code and pretrained models available at https://github.com/renwang435/CYBORGS

https://github.com/renwang435/CYBORGS
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Fig. 1: Mutually improving representation learning and semantic segmentation. In the first
stage, we use available segmentation masks to ground contrastive learning. In the second stage, we
use representations from the backbone fθ to bootstrap improved segmentation masks.

We argue that utilizing pixel-level object information can be even more
effective than detection-level boxes. By parsing random crop contents with
segmentation masks, we can turn a pair of crops into a diverse wealth of similar
and dissimilar object regions, facilitating contrastive self-supervised learning. To
fully realize this idea in SSL frameworks, we also need to meet two important
criteria. Firstly, these masks should be obtained in an unsupervised manner.
Secondly, we want to avoid preprocessing pipelines to obtain pseudo-segmentations
(e.g., graph cut algorithms), which often lack awareness of object-level semantics
and require human domain knowledge for good performance [20, 50].

To this end, we propose in this work to perform segmentation and concept
learning jointly (Fig. 1). In the first stage of our framework, we ground self-
supervised learning with segmentation information to train a representation
backbone. In a periodic second stage, we leverage these representations to boot-
strap segmentation masks, which can subsequently be fed back to the first stage
to further improve representations. By iterating between these two core stages, we
develop representations which strongly generalize to many downstream tasks, and
are especially well-aligned with object detection and segmentation. Furthermore,
to ameliorate issues of representation collapse, we also optimize a clustering con-
sistency objective during the first stage. We show that the formulation of this loss
fits naturally within any contrastive framework, and helps improve masks more
reliably between bootstrap cycles. Thus, in ContrastivelY Bootstrapping Object
Representations by Grounding in Segmentation (cyborgs), our contributions
are fourfold:

1. We develop the first framework which performs end-to-end, joint self-supervised
learning of object-level representations and semantic segmentation, while re-
moving entirely the need for heuristic preprocessing of pseudo-segmentations.

2. We show how to bootstrap segmentation masks robustly by directly clustering
on feature maps obtained from a partially pretrained backbone.

3. We demonstrate how to regularize contrastive updates in our framework
with an intra-/inter-view cluster consistency loss that is well-aligned with
the hyperspherically-distributed contrastive embeddings.

4. With pretraining on complex scene images such as COCO, we demonstrate
that grounding in segmentation leads to representations which transfer com-
petitively to a diversity of downstream tasks and real-world, long-tail objects
and scene semantics.
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2 Related Work

Self-supervised representation learning. SSL methods utilize internal structure as
a source of supervision to learn general representations, including auxiliary tasks
such as context prediction [13], solving jigsaws [35], inpainting [37], colorization
[51], or orientation prediction [27]. Most relevant to our work is contrastive
learning, where the goal is to perform instance discrimination, concentrating
positive pairs and separating negative pairs of feature embeddings in a latent space
[8, 15, 19, 36]. Despite their convincing performance on downstream tasks, the
majority of current contrastive-based methods are pretrained on ImageNet, and
subject to strong object-centric bias and poor visual grounding [21, 34, 38, 40].

To this end, a number of emerging methods examine self-supervised represen-
taton learning on in-the-wild, scene image datasets such as COCO [33, 40, 45].
CAST improves visual grounding by ensuring crops overlap readily with object
regions identified by saliency masks, and guides representation learning using a
Grad-CAM loss [39, 40]. ORL uses a pretrained self-supervised model to approx-
imate object-level semantic correspondence, thus improving positive-negative
identification for contrastive refinement of the pretrained model [45].

Going a step further, cyborgs and other works obtain object-level semantics
through pixel level pseudo-labeling [1, 17, 20, 41, 52]. For example, DetCon [20]
involves unsupervised preprocessing of images to obtain masks, and uses these
masks to aggregate features over object regions for contrastive learning. Crucially,
all other previous methods suffer from the disadvantage that mask proposals
are generated i) via graph-based algorithms requiring heuristic hyperparameter
decisions, and ii) only once before training, with no further learning. In contrast,
by integrating object mask proposals and contrastive pretraining into the same
loop, cyborgs iteratively refines and improves both segmentation quality and
learned representation quality, jointly.

Unsupervised segmentation and clustering. The use of clustering-based approaches
in SSL has a long history [5, 6, 31]. DeepCluster is a seminal work which proposed
to train a CNN by alternating between feature clustering to obtain class pseudo-
labels, and learning to predict those very labels [5]. PCL and SwAV combine
a clustering objective with a contrastive objective, directly encoding semantic
structure learned by clustering into a latent representation space [6, 31]. Instead
of directly improving features by learning to cluster feature prototypes, cyborgs
primarily uses clustering as a mechanism to improve segmentation.

Indeed, clustering-based algorithms have recently found application in a num-
ber of unsupervised and self-supervised image segmentation works [11, 22, 50, 52].
Both pixel and region-level contrastive learning methods have been employed
to i) improve semantic segmentation for better representation learning [46, 52],
and ii) vice versa [11, 22, 26]. To the best of our knowledge, cyborgs is the
first work to consider these two well-studied tasks as complementary, iteratively
synergizing them together via a bootstrapping paradigm. Additionally, cyborgs
does not directly optimize for segmentation quality via pixel-level losses, and
aims to improve segmentation strictly insofar as it aids in representation learning.
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3 CYBORGS

We now describe the details in our proposed framework. In Section 3.1, we
provide an overview of the abstractions in our work. At its core, we require
iteration between two components: a contrastive objective capable of leveraging
masks to train an encoder, and an unsupervised method to generate masks from
a (partially) trained encoder. In Section 3.2 and Section 3.3, we describe the
particular instantiations of these two components in our demonstration of the
framework. Finally, in Section 3.4, we show how to construct a self-supervised
consistency loss to guide mask generation.

3.1 CYBORGS Framework Abstraction

Following typical contrastive learning frameworks in vision, we begin with a given
RGB image I ∈ R3×H×W of height H and width W , and two transformations
t, t′ independently sampled from data augmentation pipelines T , T ′. For the time
being, we assume we also have ground truth semantic segmentation masks {M} ∈
[0, 1]C×H×W . Each H×W binary mask M describes pixel-wise class membership
for a particular class, for C total classes. Applying the transformations to I, {M}
yields two augmented views v = t(I),v′ = t′(I), and two semantic maps {m} =
t({M}), {m′} = t′({M}). Note that every m contains object-level assignments
spatially aligned with view v, and likewise every m′ aligns with v′. After passing
view v to a (fully) convolutional encoder fθ for featurization, we can extract a

(sub)set of intermediate feature maps {F} = {y[1], . . . ,y[l]}, where y[l] = f
[l]
θ (v)

for layer l. Doing the same for view v′ yields feature maps {F′}.
These feature maps inherently contain spatial and latent information about

the image, which we can leverage using the segmentation masks. The core idea
is conceptually simple and lightweight: we can sample arbitrary regions in the
feature maps and apply the binary masks {m}, {m′} to filter out groups of
features which correspond to the same underlying object regions. Applying
mean pooling, concatenation, or some other general aggregation operator to
these groups yields feature vectors containing similar and dissimilar object-
level semantics. These positive-negative pairs allow us to use a flexible class of
contrastive objectives to train our encoder fθ. Note that this naturally requires
upsampling or downsampling either the masks or the feature maps to the same
spatiality, and our framework is entirely agnostic to these details. But a more
immediate problem is obtaining reasonable masks {M} to begin with.

A crucial assumption we have thus maintained is that ground truth segmen-
tation masks are available. Indeed, without specification of how object regions
correspond to each other across views, the very notion of positives and negatives
for a contrastive formulation becomes ill-defined. Previous works which have
relied on such masks in a similar fashion have used simple spatial heuristics such
as grid-based masks, or more complex unsupervised algorithms such as graph cut
segmentations [1, 20, 52]. Ultimately, we find that these approaches yield unsat-
isfactory masks which are semantics-unaware, or require significant hand-tuning,
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Fig. 2: CYBORGS Training Framework. We sample over the feature maps for different views,
using segmentation masks to identify similar and dissimilar object regions. These are aggregated into
positive and negative feature vectors, respectively, for the contrastive objective Lmask (Section 3.2).
Periodically, we also backprop through a clustering consistency loss Lclus (Section 3.4).

especially when employed on scene images. But composing a learning-based
procedure is non-trivial; the contrastive objective cannot backpropagate through
the non-differentiable augmentations t, t′ and modify a mask m directly.

To this end, our framework bootstraps segmentation masks using representa-
tions from the partially trained model fθ. This idea is motivated by two insights.
Firstly, the contrastive objective directly improves the encoder fθ, and thus
leveraging the features from fθ can help us obtain semantic-aware masks which
correspondingly improve over the course of training. Secondly, recall that the
ultimate goal of our framework is to improve representation learning. Since
downstream transfer of representations takes places on fθ, using the representa-
tions from fθ to construct our segmentation masks ensures that representation
quality and bootstrapped mask quality are tied together. Implementation-wise,
our framework is agnostic to the actual algorithm employed for mask generation,
with the only constraint being that the method cannot rely on ground truth
supervision. For concreteness, we illustrate in Section 3.3 how to generate robust
masks using a simple KMeans clustering-based algorithm on the feature maps
{F}. By iterating between contrastive updating of fθ and unsupervised generation
of masks, we mutally improve our representations and segmentations.

3.2 Mask-Dependent Contrastive Learning

To demonstrate the utility of our framework, we first choose the loss function
from [20] as the particular instantiation of a mask-based contrastive objective
for training our encoder in the first stage. We provide a high level review here.

In [20], {F} is a single 2048× 7× 7 feature map extracted from the final layer
of a standard ResNet-50 encoder processing view v (before average pooling). The
entire feature map is sampled, and the segmentation masks in {m} are spatially
downsampled accordingly. Aggregation of {F} is obtained via mask-based pooling
for each m ∈ {m}:
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hm =
1∑

i,j m[i, j]

∑
i,j

m[i, j]F[i, j] (1)

Feature map {F′} is similarly aggregated after processing view v′ with a target
encoder fξ, yielding h′

m′ . For additional asymmetry, hm is further transformed
by an online projector gθ and predictor qθ to obtain vm = qθ(gθ(hm)), and hm′

is transformed by a target projector gξ to obtain v′
m′ = gξ(h

′
m′). The target

parameters ξ are updated as an exponential moving average (EMA) of their
online counterparts θ. The final mask-based contrastive objective is given by:

Lcontrastive = Em,m′∼{m},{m′}

[
− log

exp(vm · v′
m′)

exp(vm · v′
m′) +

∑
n exp(vm · vn)

]
(2)

for negative pooled features {vn} sampled from different masks and images.

In addition, inspired by prior art demonstrating that different layers within a
CNN encode information at different semantic resolutions [18, 28, 47], we also
extract and utilize features from throughout ResNet-50, instead of relying solely
on features from the final convolutional map as in [20]. By fusing these features
together spatially (after upsampling or downsampling), downstream learning is
able to leverage information across the semantic spectrum, from low-level local
structure, to high-level global style. Further details are available in the appendix.

3.3 Bootstrapping Segmentation Masks

Recall that our framework is agnostic to the particular algorithm used in the
second stage bootstrapping of better segmentation masks. For simplicity, we
illustrate the details of this stage using a classic KMeans clustering algorithm.

Fig. 3: Bootstrapping Masks. To generate the
segmentation masks, we perform simple KMeans
clustering on a feature map from the trained back-
bone, with a dynamic number of clusters.

More formally, we begin by con-
sidering a batch of B input RGB im-
ages {I} ∈ RB×3×H×W , and a (fully)
convolutional backbone fθ which has
been trained in a self-supervised fash-
ion via the objective in (2). We
choose a particular layer ℓ, and extract

the feature map y
[ℓ]
θ = f

[ℓ]
θ ({I}) ∈

RB×DF×HF×WF . We omit the layer
index ℓ and online encoder parame-

ters θ for brevity, so that y ≜ y
[ℓ]
θ .

We then flatten the feature maps
and ℓ2-normalize feature-wise, gen-
erating a matrix of features F ∈
R(B·HF ·WF )×DF . Given a hyperparameter K, representing the number of clusters
(or unique object classes) within the segmentation mask, we perform spheri-
cal K-means clustering on F, ending up with a matrix of feature prototypes
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P = {µ1, µ2, . . . , µK} ∈ RDF×K . We assign to each cell in the original feature
map y[ℓ] a cluster label based on their Euclidean distances to the prototypes in
P. Finally, we broadcast the class assignments back to the original dimensions of
the image I via nearest neighbor interpolation, akin to [9].

Periodic bootstrapping. Performing such a clustering operation on every epoch
to regenerate the segmentations can be expensive. Even if computation was not
an issue, we empirically find that representations do not improve monotonically
with epochs, so bootstrapping masks too frequently can actually lead to worse
masks. Moreover, as a result of an undertrained encoder fθ at the beginning of
training, we obtain poorer early clusterings; noisy masks lead to noisy gradients
for updating the encoder, and vice versa. Thus, to avoid representation collapse,
we periodically bootstrap the segmentation masks every N epochs, where N is a
hyperparameter much greater than 1.

Scale-dynamic sampling. The choice of K also merits discussion. Given access
to some oracle, a natural choice might be to set K equal to the number of
unique object classes within the image. However, as a number of prior works have
identified, the semantic context provided by extra “distractor” classes outside
of the main object classes can serve as a useful signal for clustering [5, 9, 24].
But increasing K also requires more images within the bootstrapping batch to
perform KMeans reliably on the features, reducing the scalability of our method.

To balance these motivations, for every batch of images where we wish to
bootstrap segmentations, we dynamically sample integer K uniformly between
Kmin = 2 and Kmax = 256, inclusive. Intuitively, Kmin = 2 represents a mask
which imparts the model with simple foreground-background semantics, while
the upper bound of Kmax = 256 yields an oversegmentation (COCO offers only
81 labeled object segmentation classes.) By varying K in such a fashion, not only
do we maintain efficiency in bootstrapping, but we also reintroduce our model to
information of varying semantic scale on every bootstrap cycle. As we show in
Section 4.4, this technique improves the robustness of our representations.

3.4 Consistency as a Curriculum for Segmentation

Despite the use of periodic bootstrapping and scale-dynamic sampling, we find
that the long training schedules employed in contrastive learning can still lead to
divergence between our representation learning and semantic segmentation objec-
tives. This is because our framework up to now improves the segmentation only
implicitly. While we are optimizing on every iteration our contrastive objective in
(2), regularly improving our encoded representations, the bootstrapping of masks
is optimization-free with respect to the encoder. Without an update signal to
explicitly encode the semantics of desirable vs. non-desirable segmentations, the
encoder over-prioritizes the goal of representation learning, and can diverge from
a feature distribution which yields good segmentations.
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Clustering consistency. To this end, we reuse a universal paradigm in contrastive
learning: similar objects across different scenes and different views should have
similar labels. We introduce a clustering consistency loss, similar to that employed
in [11], which can be applied more regularly every M epochs, where M is more
frequent than the every N epochs used per bootstrapping cycle.

Concretely, recall the feature map y ∈ RDF×HF×WF and feature prototypes
P = {µ1, µ2, . . . , µK} ∈ RDF×K we obtained in Section 3.3 after processing view
v using the online encoder fθ. We obtain a similar map y′ and set of prototypes
P′ = {µ′

1, µ
′
2, . . . , µ

′
K} after featurizing v′ with the target encoder fξ. Consider

the feature at pixel [i, j] within y, for an arbitrary 1 ≤ i ≤ HF and 1 ≤ j ≤ WF .
With a slight abuse of notation, we let µ[i,j] represent the prototype this feature
is assigned to under P (and similarly, µ′

[i,j] the assignment of y′[i, j] under P′).
Then we define a clustering consistency loss via:

Lclus =
1

HFWF

HF∑
i=1

WF∑
j=1

intra−loss︷ ︸︸ ︷
d
(
µ[i,j],y[i,j]

)
+ d

(
µ′

[i,j],y
′
[i,j]

)
+

inter−loss︷ ︸︸ ︷
d
(
µ′

[i,j],y[i,j]

)
+ d

(
µ[i,j],y

′
[i,j]

)
(3)

where d(·, ·) is some distance function. Intuitively, intra-cluster consistency
enforces that under one scene, object regions with similar features should be
clustered into similar prototypes. Similarly, inter-cluster consistency enforces
that under different scenes, we still wish for features from different regions
corresponding to similar objects to be assigned to the same prototype. This
forces our learned prototypes to be invariant to differences between views and
generalize to object-centric semantics, which translates readily to higher fidelity
segmentation masks during bootstrapping updates.

To formulate d(·, ·), we draw inspiration from recent work which demonstrates
that the infoNCE objective in contrastive learning promotes a feature space
which is uniformly distributed on the unit hypersphere [42]. The von Mises-Fisher
(vMF) distribution defines a probability density over a unit hypersphere, making
it a natural candidate to characterize the feature space learned by our mask-based
contrastive objective in (2). We refer readers to a comprehensive treatment in [14]
for details. In our setting, we can assume a vMF mixture model where each feature
y is drawn uniformly from one of K vMF distributions, each parameterized by a
feature clustering prototype µ1, µ2, . . . , µK , and sharing a common concentration
hyperparameter κ. Then our clustering consistency loss objective is formulated
as maximizing the posterior likelihood of a particular encoded feature y being
assigned to its corresponding cluster c under this mixture, with 1 ≤ c ≤ K. That
is, we seek to minimize the negative log-likelihood given by:

d(µ[i,j],y) = − log p(µ[i,j]=c | y, µ1, µ2, . . . , µK) = − log
exp

(
κµT

[i,j]y
)

K∑
c′=1

exp
(
κµT

c′y
) (4)
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The vMF clustering loss objective described in (3) also serves an additional
purpose towards the beginning of our pretraining pipeline. In the total absence
of reliable masks before the first bootstrapping cycle, we train our encoder fθ
strictly with the loss in (3), setting K to a fixed parameter depending on the
median number of objects per scene in our dataset (e.g., for COCO, we use
K = 8). This vMF warmup period of W epochs (W = 5 in our work) serves to
burn in our encoder. After more reasonable representations have been learned, we
immediately bootstrap the masks, and subsequent epochs using a combination
of the mask-based contrastive loss in (2) and the vMF clustering loss in (3), as
their respective periods N and M dictate. For a comprehensive outlining of our
algorithm flow, we refer readers to the pseudocode presented in the appendix.

4 Experiments

In our experiments, we aim to demonstrate that joint learning of general repre-
sentations and semantic segmentation can be successfully accomplished via our
bootstrapping method. We show strong performance on multiple downstream
tasks (Section 4.2), surprisingly robust segmentation performance over a long-
tailed distribution of objects (Section 4.3), and a convincing array of ablations
which validate our design choices and methodological contributions (Section 4.4).

4.1 Experimental Settings

Datasets. Given our primary goal of learning on images in the wild, we follow
previous works [33, 40, 43] and pretrain on the train2017 split of the MS COCO
dataset [32]. With ∼118k images of natural settings, MS COCO is widely adopted
as a benchmark more reflective of real-world scenarios across a breadth of
downstream tasks of interest, such as object detection or instance segmentation.
For a relevant quantitative comparison, note that the heavily object-dominant
ImageNet dataset contains on average 1.1 objects per image, whereas the average
scene image in COCO contains 7.3 objects [43]. Crucially, we use no scene-level,
object-level, or pixel-level label information in our pretraining pipeline.

Implementation details. To enable easy comparison to other SSL works in similar
settings [33, 40, 43, 45], we use a ResNet-50 backbone in all of our models. Other
architectural details such as the dimensionality of projection and prediction
MLPs described in Section 3.2 follow directly from BYOL [15].

For our mask-based contrastive objective in (2), we aggregate features from
res2, res3, res4, downsampling all layers to a spatial resolution of 7× 7. This
allows us to leverage a lightweight but comprehensive semantic hierarchy. We
bootstrap the segmentation masks every N = 100 epochs, performing clustering
on the feature map from res2.b2 in batches of 16 images (where b2 refers to
block 2). We use a vMF warmup period of 5 epochs; outside the warmup period,
the vMF clustering loss is employed every 5 epochs with weight λ = 0.1 and
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Method

VOC07 clf.
IN-1k,

1% Labels
IN-1k,

10% Labels
VOC Detection COCO Instance Segmentation

mAP
Top-1
acc.

Top-5
acc.

Top-1
acc.

Top-5
acc.

APbb APbb
50 APbb

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

1) simclr [8] 78.1 23.4 46.4 52.2 77.4 – – – 37.0 56.8 40.3 33.7 53.8 36.1

2)moco-v2 [10] 82.2 28.2 54.7 57.1 81.7 54.7 81.0 60.6 38.5 58.1 42.1 34.8 55.3 37.3

3) byol [15] 84.5 28.4 55.9 58.4 82.7 55.5 81.7 61.7 39.5 59.3 43.2 35.6 56.5 38.2

4) bai et al. [1] – – – – – 57.1 82.1 63.8 39.8 59.6 43.7 35.9 56.9 38.6

5) densecl [43] 83.8 – – – – 56.7 81.7 63.0 39.6 59.3 43.3 35.7 56.5 38.4

6) cast [40] 73.1 – – – – 54.2 80.1 59.9 36.7 56.7 39.9 33.6 53.6 35.8

7) orl [45] 86.7 31.0 58.9 60.5 84.2 55.8 82.1 62.3 40.3 60.2 44.4 36.3 57.3 38.9

8) cyborgs(ours) 86.9 31.3 59.4 61.7 84.2 58.0 83.0 64.3 42.0 62.6 46.2 38.0 59.7 40.8

Table 1: Transfer Learning on Downstream Tasks. We report strong, state-of-the-art performance
across linear classification on VOC07, semi-supervised finetuning on ImageNet-1k, and transfer on
VOC object detection and COCO instance segmentation. All methods are pretrained on COCO with
a ResNet-50 backbone, and finetuned on the reported datasets.

κ = 10. In pretraining, we use the LARS optimizer [49] with a batch size of 64
across 8 NVIDIA RTX 3090s for 800 epochs. The initial learning rate is set to 0.1,
and the weight decay is 1.5e−6. Clustering is implemented via GPU-accelerated
mini-batch approximation using the FAISS library [25].

4.2 Main Results: Representation Learning

We follow standard downstream transfer-based protocols to evaluate the strength
of representations learned by cyborgs. In particular, we begin with frozen
linear evaluation on VOC07 and semi-supervised transfer on ImageNet-1k. In
comparison to similar state-of-the-art self-supervised methods pretrained on
COCO, we achieve improvements of +0.2 mAP for VOC07 and +0.3%,+1.2% in
top-1 accuracy for semi-supervised 1% and 10% on IN-1k, respectively. While
these gains are only incremental, image classification requires semantic-level
knowledge [2, 38, 48], whereas we design our method around leveraging pixel-
level information, and so even marginal gains are a surprising windfall.

While linear probing has been treated as the gold standard for assessing feature
quality, that strong performance in tasks such as detection and segmentation are
even more reflective of potent learned representations. We demonstrate convincing
state-of-the-art on PASCAL VOC detection and COCO instance segmentation.
In comparison to a strong and well-established BYOL baseline, we provide a
+2.5 AP improvement on the former, and a +2.5 and +2.4 AP improvement on
the latter. Our results on segmentation in particular are noteworthy; while we
do not make use of pixel annotations, our bootstrapping scheme clearly aligns
with latent information critical to the segmentation task. To further verify this
robust segmentation performance, we also perform transfer-based evaluation
on CityScapes semantic segmentation [12], as well as LVIS long-tailed instance
segmentation [16], which we detail in the appendix. We achieve state-of-the-art
on these datasets amongst all other previous SSL methods pretrained on COCO,
with a substantial +3.4 AP and +3.3 AP improvement on LVIS, demonstrating
that our framework can also generalize to unseen object structures and semantics.



CYBORGS 11

(a) Raw RGB (b) KMeans Mask (c) CRF-Refined Mask (d) Ground Truth

Fig. 4: Bootstrapped segmentation masks from a CYBORGS-pretrained encoder on
COCO. We show KMeans segmentations on the bilinearly upsampled feature maps for visual quality.
During actual bootstrapping, we first segment the feature map, before performing nearest neighbors
upsampling, and do not perform CRF refinement on the mask. Colors do not necessarily correspond
across images (rows) or between mask types (columns), but are consistent within a single image itself.

4.3 Segmentation Quality

We first confirm qualitatively (Fig. 4) that bootstrapped masks generated by
cyborgs are indeed semantically meaningful. Note that our clustering-based
segmentations easily extend beyond the original labeled classes of COCO, despite
receiving no ground truth information about pixel labels throughout pretraining.

How does cyborgs work with such noisy masks? In addition to the masks
generated by clustering on the feature maps from the backbone encoder, we also
show the mask resulting from refinement using a fully connected conditional
random field (CRF), using the distances to feature prototypes in latent space as
priors, following the protocol described in previous works [7, 29]. We argue that
although the raw masks at a pixel-level appear to be noisy, their easy refinement
into masks closely aligned with ground truth masks indicates that the encoded
features are quite well aligned with object-level concepts at the semantic level.

Why bootstrap masks? To further demonstrate the robustness of our bootstrapping
process for mask generation, we retrain cyborgs using alternative masks. Instead
of bootstrapping masks, we employ random cropping masks (i.e. all pixels in
the scene belong to the same class), a 5× 5 spatial grid mask and Felzenszwalb-
Huttenlocher (FH) masks used in [1, 20], detection-level object masks acquired
via selective search pre-processing, and ground truth masks available in COCO.
These masks are generated before pretraining and remain fixed, supplanting
our bootstrapping algorithm. Given the unsupervised generalization of masks
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Type of Mask mIoU

Random Crop 15.9
5x5 Grid 18.7
FH Masks 27.7
Obj. Bounding Boxes 29.0
cyborgs Masks (ours) 33.6
Ground Truth Masks 35.2

(a) Importance of bootstrapping. (b) Masks (blue) and representations (red)
improve jointly.

Fig. 5: Using semantic segmentation performance on COCO-Stuff-10k to evaluate boot-
strapping value. (a) Replacing our bootstrapping segmentation core with static boxes from other
unsupervised heuristics leads to decreased performance. (b) Note a single epoch of using improved
masks can lead to significant gains (epoch 100).

generated under our framework to a long-tailed distribution of objects (c.f. Fig. 4),
we evaluate the representations by transferring the trained backbones to a ResNet-
50 FCN and finetuning end-to-end on COCO-Stuff-10k semantic segmentation.
COCO-Stuff-10k is a densely labeled subset of COCO, comprising of 9k images for
training and 1k images for testing, across 171 semantic categories [4]. We verify in
Fig. 5a that bootstrapping mask-level information through cyborgs outperforms
detection-level boxes obtained from selective search, and nears performance of
pretraining with fixed, stable ground truth masks.

Joint improvement of masks and representations. The harmonious interplay
between the representation learning and semantic segmentation components of
our framework is one of our major contributions. To ascertain that representations
and segmentation quality mutually improve over pretraining, we continue to
assess semantic segmentation performance on the COCO-Stuff-10k dataset, for
saved checkpoints throughout various stages of pretraining. For a batch of input
images, we extract frozen feature maps from the same layer we use to bootstrap
segmentation masks (res2.b2), and bilinearly interpolate to the original image
dimensions. We then add a single layer of 1x1 convolutions to predict the pixel
labels, yielding a final setup akin to linear probing in transfer-based evaluation.

Because only this last layer is trainable in the resulting model, segmentation
performance is heavily dependent on the quality of the extracted feature maps.
Since these are exactly the inputs to our KMeans segmentation algorithm, we
obtain transfer results which correlate readily with the quality of our bootstrapped
masks. To evaluate representation quality in the same pretrained models, we
transfer the ResNet-50 backbones, unfreeze all layers, and add an FCN head,
finetuning on COCO-Stuff-10k end-to-end. We perform these evaluations for
cyborgs models pretrained for 5, 25, 50, 100, 200, 500 and 800 epochs. As
seen in Fig. 5b, this evaluation scheme demonstrates that mask quality and
representation quality improve jointly over the course of pretraining. Note that
we bootstrap masks for the first time at the beginning of epoch 100 using our
partially pretrained backbone; a subsequent iteration over the entire dataset is
sufficient to improve both mask and representation semantics significantly.
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N APall

0 9.75
10 52.6
50 58.3
100 58.0
200 55.0
400 52.7

(a) Bootstrapping
frequency. Mask
bootstrapping too
often or not enough
leads to poor perfor-
mance.

Case APall

CRF 58.6
No CRF 58.0

(b) CRF in boot-
strapping. Refining
bootstrapped masks
with CRFs during
pretraining is not
necessary.

Layers APall

2 55.1
3 55.8
4 52.7
2+4 56.4
2+3+4 58.0

(c) Features in
contrastive objec-
tive. Leveraging a se-
mantic hierarchy of
features is important.

Layers APall

2.b2 58.0
2+3 58.2
2+4 54.4
2+3+4 55.0

(d) Features in
KMeans. Ear-
lier maps are more
amenable to KMeans
segmentation.

K APall

K = 2 22.6
K = 81 42.5
K = 256 33.2
K ∼ U [2, 256] 58.0

(e) Scale-dynamic
sampling. Dynam-
ically sampling
cluster resolution for
KMeans segmenta-
tion works best.

Loss APall

Euclidean 53.8
vMF 58.0

(f) Clustering loss.
Euclidean distance
for (4) leads to sig-
nificant performance
degradation.

M APall

0 41.8
1 58.6
5 58.0
10 57.8
50 55.6

(g) vMF Loss
Frequency. Apply-
ing the vMF curricu-
lum more regularly
leads to stronger per-
formance.

λ APall

0 41.5
0.001 42.3
0.01 57.8
0.1 58.0
1 57.2

(h) vMF Loss
Weight. Perfor-
mance is sensitive to
the presence but not
weight of the vMF
loss.

Table 2: Ablations for design choices in cyborgs. We report average precision (AP) for object
detection on PASCAL VOC test2007. Default settings corresp. to Table 1 are highlighted in gray .

4.4 Ablations and Discussion

All ablation models are pretrained using a ResNet-50 backbone, and evaluations
are performed on PASCAL VOC detection for faster turnaround time.

Bootstrapping frequency. We perform a sensitivity analysis on the bootstrapping
frequency parameter N , where we regenerate the masks on epoch N, 2N, . . . ,
using feature maps from the improving encoder (Table 2a). Using only the
initial masks obtained under vMF warmup for pretraining (i.e., N = 0) leads to
collapsed performance. Moreover, bootstrapping the masks too frequently (N =
10) also leads to a performance drop, consistent with our hypothesis in Section 3.3
that unstable masks which are changing too rapidly can lead to representational
collapse. Finally, we also note that bootstrapping too infrequently (i.e., N = 400)
is similarly suboptimal, validating our default chosen schedule.

CRF-refinement of masks. Given the qualitative improvements of the CRF-refined
masks when performing the final evaluation (c.f. Fig. 4), a natural consideration is
to apply CRF post-processing to the masks during every bootstrapping cycle. As
we show in Table 2b, this brings only incremental improvements to the resulting
representations, which we believe do not justify the increase in computational
complexity. This result also further validates our claim in Section 4.3 that the
representations under cyborgs are already well-aligned in latent space with
respect to the semantic segmentation task.
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Usage of multiple layers of features. Throughout our method, there are two
points where we potentially use feature maps from multiple layers of our encoder
backbone. The first is in the aggregation of features for our contrastive objective
in (2). We show in Table 2c that using res2, res3, res4 from our backbone
in combination is crucial to performance. This further verifies that leveraging
information from across the semantic spectrum learned by the encoder is vital.

The second point is in the bootstrapping of masks, where we use only the
feature map from res2.b2 of our backbone. We show in Table 2d that feature
aggregation across multiple layers does not help here. One explanation for this
phenomenon is curse of dimensionality; a simple KMeans clustering procedure
on extremely high dimensional features aggregated across multiple layers may
result in clusters with few or no points.

Scale-dynamic sampling. We also perform an ablation on dynamically sampling
the semantic resolution of masks during bootstrapping. We compare with a
foreground-background masks (K = 2), object-level masks (K = 81 categories
from COCO), and clustering with the same number of unique labels as the default
graph-based segmentation algorithm used in [20]. As shown in Table 2e, fixing
the KMeans cluster dimension at any level reduces the performance of cyborgs.
This validates our choice to provide the encoder with diverse levels of detail
through bootstrapped masks of varying semantic resolution.

vMF clustering loss. We verify several properties of the clustering loss in (4). As
seen in Table 2f, basing the loss on the vMF distribution, which aligns better
with our hyperspherically-distributed embeddings, results in better transfer
performance. We also examine the frequency at which the vMF clustering loss
is applied, and how sensitive our method is to the weight of this loss. Table 2g
validates that applying the loss more frequently increases downstream transfer
performance. In combination with Table 2h we note the weight of the loss does not
dramatically influence performance, but its presence is important; at λ = 0, 0.001
or if M = 0 (i.e., no application of vMF loss), the performance collapses.

5 Conclusion

We have proposed cyborgs, a novel self-supervised framework which learns
object-level representations and semantic segmentation jointly, in an end-to-end
fashion. In pretraining on complex scene images, our representations transfer
competitively to a diverse array of downstream tasks, with particularly strong
alignment with a long-tailed distribution of object-level segmentation semantics.
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[18] Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object
segmentation and fine-grained localization. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 447–456 (2015)

[19] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsu-
pervised visual representation learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 9729–9738
(2020)
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