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Abstract

High-definition (HD) semantic maps are crucial in en-
abling autonomous vehicles to navigate urban environ-
ments. The traditional method of creating offline HD
maps involves labor-intensive manual annotation pro-
cesses, which are not only costly but also insufficient for
timely updates. Recent studies have proposed an alterna-
tive approach that generates local maps using online sen-
sor observations. However, this approach is limited by the
sensor’s perception range and its susceptibility to occlu-
sions. In this study, we propose Neural Map Prior (NMP),
a neural representation of global maps. This representation
automatically updates itself and improves the performance
of local map inference. Specifically, we utilize two ap-
proaches to achieve this. Firstly, to integrate a strong map
prior into local map inference, we apply cross-attention, a
mechanism that dynamically identifies correlations between
current and prior features. Secondly, to update the global
neural map prior, we utilize a learning-based fusion mod-
ule that guides the network in fusing features from previous
traversals. Our experimental results, based on the nuScenes
dataset, demonstrate that our framework is highly compat-
ible with various map segmentation and detection architec-
tures. It significantly improves map prediction performance,
even in challenging weather conditions and situations with
a longer perception range. To the best of our knowledge,
this is the first learning-based system for creating a global
map prior.

1. Introduction
Autonomous vehicles require high-definition (HD) se-

mantic maps to accurately predict the future trajectories
of other agents and to navigate urban environments safely.
However, the majority of these vehicles rely on costly and
labor-intensive pre-annotated offline HD maps. These maps
are constructed through a complex pipeline involving multi-
ple LiDAR scanning trips with survey vehicles, global point
cloud alignment, and manual annotation of map elements.
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Figure 1. Comparison of semantic map construction methods.
Traditional offline semantic mapping pipelines (the first row) in-
volve a complex manual annotation pipeline and do not support
timely map updates. Online HD semantic map learning methods
(the second row) rely entirely on onboard sensor observations and
are susceptible to occlusions. We propose the Neural Map Prior
(NMP, the third row), an innovative neural representation of global
maps designed to aid onboard map prediction. NMP is incremen-
tally updated as it continuously integrates new observations from
a fleet of autonomous vehicles.

Despite the high precision of these offline mapping solu-
tions, their scalability is constrained, and they do not sup-
port timely updates in response to changing road conditions.
As a result, autonomous vehicles may operate based on out-
dated maps, which could compromise driving safety.

Recent research has explored alternative methods for
constructing HD semantic maps using onboard sensor
observations, such as camera images and LiDAR point
clouds [11,13,15]. These methods typically use deep learn-
ing techniques to infer map elements in real-time, thus ad-
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dressing the issue of map updates associated with offline
maps. Nevertheless, the quality of these inferred maps is
generally inferior when compared to pre-constructed global
maps. And this quality can degrade further under unfavor-
able weather conditions or in occluded scenarios. The com-
parison of different semantic map construction methods is
provided in Figure 1.

In this study, we present Neural Map Prior (NMP), a
novel hybrid mapping solution that combines the best of
both worlds. NMP leverages neural representations to build
and update a global map prior, thereby enhancing local map
inference performance. The NMP methodology consists of
two important stages: global map prior update and lo-
cal map inference. The global map prior is automatically
developed by aggregating sensor data from a fleet of self-
driving cars. Onboard sensor data and the global map prior
are then integrated into the local map inference process,
which subsequently refines the map prior. These procedures
are interconnected in a feedback loop that grows stronger as
more data are collected from vehicles traversing the roads
daily. One example is shown in Figure 2.

Technically, the global NMP is defined as sparse map
tiles, where each tile corresponds to a specific real-world lo-
cation and starts in an empty state. For each online observa-
tion from an autonomous vehicle, a neural network encoder
first extracts local bird’s-eye view (BEV) features. These
features are then refined using the corresponding NMP prior
features, derived from the global NMP’s map tile. The re-
fined BEV feature enables us to better infer the local se-
mantic map and update the global NMP. As the autonomous
vehicles traverse through various scenes, the local map in-
ference phase and the global map prior update step mutu-
ally reinforce each other. This iterative process results in
improved quality of the predicted local semantic map and
maintains a more complete and up-to-date global NMP.

We demonstrate that our NMP can be easily applied to
various state-of-the-art HD semantic map learning methods,
effectively enhancing their accuracy. Through experiments
conducted on the nuScenes dataset, our pipeline showcases
remarkable performance improvements, including a +4.32
mIoU for HDMapNet, +5.02 mIoU for LSS, +5.50 mIoU
for BEVFormer, and +3.90 mAP for VectorMapNet.

To summarize, our contributions are as follows:

1. We propose a novel mapping paradigm, Neural Map
Prior, which integrates the maintenance of offline
global maps and the inference of online local maps.
Notably, the computational and memory resources re-
quired by our approach’s local map inference are com-
parable to previous methods.

2. We propose current-to-prior attention and Gated Re-
current Unit modules. These are adaptable to main-
stream HD semantic map learning methods and effec-

tively enhance their map prediction performance.

3. We conduct a comprehensive evaluation of our method
on the nuScenes dataset, considering different map el-
ements and four map segmentation/detection architec-
tures. The results demonstrate consistent and signifi-
cant improvements. Moreover, our approach demon-
strates substantial progress in challenging scenarios,
such as bad weather conditions and longer perception
ranges.

2. Related Works
LiDAR SLAM-Based Mapping. Autonomous driving sys-
tem requires an understanding of road map elements, in-
cluding lanes, pedestrian crossing, and traffic signs, to nav-
igate the world. Such map elements are typically provided
by pre-annotated High-Definition (HD) semantic maps in
existing pipelines [26]. Most current HD semantic maps are
manually or semi-automatically annotated on LiDAR point
clouds of the environment, merged from LiDAR scans col-
lected from survey vehicles equipped with high-end GPS
and IMU. SLAM algorithms are the most commonly used
algorithms to fuse LiDAR scans into a highly accurate and
consistent point cloud. First, to match LiDAR data at two
nearby timestamps, pairwise alignment algorithms such as
ICP [1], NDT [2], and their variants [29] are employed, us-
ing either semantic [39] or geometry information [24]. Sec-
ond, accurately estimating the poses of the ego vehicles is
critical for building a globally consistent map and is formu-
lated as either a non-linear least-square problem [10] or a
factor graph [7]. Yang et al. [35] presented a method for re-
constructing city-scale maps based on pose graph optimiza-
tion under the constraint of pairwise alignment factors. To
reduce the cost of manual annotation of semantic maps, Jian
et al. [9] proposed several machine-learning techniques for
extracting static elements from fused LiDAR point clouds
and cameras. However, maintaining an HD semantic map
remains a laborious and costly process due to the require-
ment for high precision and timely updates. In this paper,
we propose using neural map priors as a novel mapping
paradigm to replace human-curated HD maps, supporting
timely updates to the global map prior and enhancing local
map learning, potentially making it a more scalable solution
for autonomous driving.
Semantic Map Learning. Semantic map learning consti-
tutes a fundamental challenge in real-world map construc-
tion and has been formulated as a semantic segmentation
problem in [18]. Various approaches have been employed
to address this issue, including aerial images in [19], Li-
DAR point clouds in [34], and HD panoramas in [31].
To enhance fine-grained segmentation performance, crowd-
sourcing tags have been proposed in [32]. Recent stud-
ies have concentrated on deciphering BEV semantics from
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Figure 2. Demonstration of NMP for autonomous driving in adverse weather conditions. Ground reflections during rainy days make
online HD map predictions harder, posing safety issues for an autonomous driving system. NMP helps to make better predictions, as it
incorporates prior information from other vehicles that have passed through the same area on sunny days.

onboard camera images [17, 36] and videos [4]. Rely-
ing solely on onboard sensors for model input poses a chal-
lenge, as the inputs and target map belong to different co-
ordinate systems. Cross-view learning methodologies, such
as those found in [5,11,21,23,25,27,33,40], exploit scene
geometric structures to bridge the gap between sensor in-
puts and BEV representations. Our proposed method capi-
talizes on the inherent spatial properties of BEV features as
a neural map prior, making it compatible with a majority of
BEV semantic map learning techniques. Consequently, this
approach holds the potential to enhance online map predic-
tion capabilities.
Neural Representations. Recently, advances have been
made in neural representations [8, 14, 20, 22, 28, 37]. Neu-
ralRecon [30] presents an approach for implicit neural 3D
reconstruction that integrates reconstruction and fusion pro-
cesses. Unlike traditional methods that first estimate depths
and subsequently perform fusion offline. Similarly, our
work learns neural representation by employing the en-
coded image features to predict the map prior through a
neural network.

3. Neural Map Prior

The aim of this work is to improve local map estimation
performance by leveraging a global neural map prior. To
achieve this, we propose a pipeline, depicted in Figure 3,
which is specifically designed to concurrently train both
the global map prior update and local map learning with
integrating a fusion component. Moreover, we address
the memory-intensive challenge associated with storing
features of urban streets by introducing a sparse tile format
for the global neural map prior, as detailed in Section 4.8.

Problem Setup. Our model operates on typical au-
tonomous driving systems equipped with an array of
onboard sensors, such as surround-view cameras and
GPS/IMU, for precise localization. We assume a single-
frame setting, similar to [11], which adopts a BEV encoder-
decoder model for inferring local semantic maps. The BEV
encoder is denoted as Fenc, and the decoder is denoted as
Fdec. Additionally, we create and maintain a global neural
map prior pg ∈ RHG×WG×C , where HG and WG represent
the height and width of the city, respectively. Each obser-
vation consists of input from the surrounding cameras I and
the ego vehicle’s position in the global coordinate system
Gego ∈ R4×4. We can transform the local coordinate of
each pixel of the BEV, denoted as lego ∈ RH×W×2 (where
H and W denote the size of the BEV features), to a fixed
global coordinate system using Gego. This transformation
results in pego ∈ RH×W×2. Initially, we acquire the online
BEV features o = Fenc(I) ∈ RH×W×C , where C repre-
sents the network’s hidden embedding size. We then query
the global prior pg using the ego position pego to obtain the
local prior BEV features plt−1 ∈ RH×W×C . A fusion func-
tion is subsequently applied to the online BEV features and
the local prior BEV features to yield refined BEV features:

frefine = Ffuse(o, p
l
t−1), frefine ∈ RH×W×C . (1)

Finally, the refined BEV features are decoded into the fi-
nal map outputs by the decoder Fdec. Simultaneously, the
global map prior pg is updated using frefine. The global neu-
ral network prior acts as an external memory, capable of
incrementally integrating new information and simultane-
ously offering knowledge output. This dual functionality
ultimately leads to improved local map estimation perfor-
mance.
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Figure 3. The model architecture of NMP. The top yellow box illustrates the online HD map learning process, which takes images as
input and processes them through a BEV encoder and decoder to generate map segmentation results. Within the green box, customized
fusion modules—comprising C2P attention and GRU—are designed to effectively integrate prior map features between the encoder and
decoder, subsequently decoded to produce the final map predictions. In the bottom blue box, the model queries map tiles that overlap with
the current BEV feature from storage. After the update, the neural map is returned to the previously extracted map tiles.

3.1. Local Map Learning

In order to accommodate the dynamic nature of road
networks in the real world, advanced online map learning
algorithms have recently been developed. These methods
generate semantic map predictions based solely on data
collected by onboard sensors. In contrast to earlier ap-
proaches, our proposed method incorporates neural priors
to bolster accuracy. As road structures on maps are subject
to change, it is imperative that recent observations take
precedence over older ones. To emphasize the importance
of current features, we introduce an asymmetric fusion
strategy that combines current-to-prior attention and gated
recurrent units.

Current-to-Prior (C2P) Cross Attention. We introduce
the current-to-prior cross-attention mechanism, which
employs a standard cross-attention approach [16] to operate
between current and prior BEV features. Concretely, We
divide each BEV feature into patches and add them with
a set of learnable positional embeddings, which will be
described subsequently. Current features produce queries,
while prior features produce keys and values. A standard
cross-attention is then applied, succeeded by a fully con-
nected layer. Ultimately, we assemble the output queries to
derive the refined BEV features, which maintain the same
dimensions as the input current features. The resulting
refined BEV features are expected to exhibit superior

quality compared to both prior and current features.

Positional Embedding. It has been observed that the ac-
curacy of predicted maps declines as the distance from the
ego vehicle increases. To address this issue, we propose
the integration of position embeddings, a set of grid-shaped
learnable parameters, into the fusion module. The aim is
to augment the spatial awareness of the fusion module re-
garding the feature positions, empowering it to learn to trust
the current features closer to the ego vehicle and rely more
on the prior features for distant locations. Specifically, two
position embeddings are introduced: PEp ∈ RH×W×C for
the prior features and PEc ∈ RH×W×C for the current fea-
tures, respectively, before the fusion module Ffuse. Here,
H and W represent the height and width of the BEV fea-
tures. These embeddings provide spatial awareness to the
fusion module, effectively allowing it to assimilate infor-
mation from varying feature distances and locations.

3.2. Global Map Prior Update

To update the global map prior with the refined features
generated by the C2P attention module, an auxiliary mod-
ule is introduced, devised to attain a balanced ratio between
the current and prior features. This process is illustrated
in Figure 3. Intuitively, the module regulates the updat-
ing rate of the global map prior. A high update rate may
lead to corruption of the global map prior due to suboptimal



local observations, while a low update rate may result in
the global map prior’s inability to promptly capture changes
in road conditions. Therefore, we introduce a 2D convolu-
tional variant of the Gated Recurrent Unit [6] module into
NMP, serving to balance the updating and forgetting ratio.
Local map prior features plt−1, updated at t−1, are extracted
from the global neural map prior pgt−1. The refined features
generated by the C2P attention module are denoted as o

′
.

Integrating o
′

with the local prior features plt−1, the GRU
yields the new prior features plt at time t. Subsequently,
these features are passed through the decoder to predict the
local semantic map and the global neural map prior pgt is
updated at the corresponding location by directly replacing
them with plt. Let zt denote the update gate, rt the reset
gate, σ the sigmoid function, w∗ the weight for 2D con-
volution, and ⊙ the Hadamard product. Via the following
operations, the GRU fuses o

′
with the prior feature plt−1:

zt = σ(Conv2D([plt−1, o
′
], wz))

rt = σ(Conv2D([plt−1, o
′
], wr))

p̃lt = tanh(Conv2D([rt ⊙ plt−1, o
′
], wh))

plt = (1− zt)⊙ plt−1 + zt ⊙ p̃lt

(2)

Within the GRU, the update gate zt and reset gate rt are
instrumental in determining the fusion of information from
the previous traversal (i.e., prior feature plt−1) with the cur-
rent BEV feature o

′
. Furthermore, they govern the incorpo-

ration of information from the current BEV feature o
′

into
the global map prior feature plt. GRU enables the model to
better adapt to various road conditions and mapping scenar-
ios more effectively.

4. Experiments
Datasets. We validate our NMP on the nuScenes
dataset [3], a large-scale autonomous driving benchmark
that includes multiple traversals with precise localization
and annotated HD map semantic labels. The NuScenes
dataset contains 700 scenes in the train, 150 in the val, and
150 in the test. Data were collected using a 32-beam Li-
DAR operating at 20 Hz and six cameras offering a 360-
degree field of view at 12 Hz. Annotations for keyframes
are provided at 2 Hz. Each scene has a duration of 20 sec-
onds, resulting in 28,130 and 6,019 frames for the training
and validation sets, respectively.

Metric. We assess the quality of HD semantic learn-
ing using two metrics: Mean Intersection over Union
(mIoU) and Mean Average Precision (mAP), as presented
in HDMapNet [11]. In accordance with the methodology
detailed in HDMapNet, we evaluate three static map ele-

Table 1. Quantitative analysis of map segmentation. The per-
formance of online map segmentation methods and their NMP
versions on the nuScenes validation set. By adding prior knowl-
edge, NMP consistently improves these methods. (* HDMapNet
remains the same as in the original work, while LSS uses the same
backbone as BEVFormer.)

Model
mIoU

Divider Crossing Boundary All

HDMapNet 41.04 16.23 40.93 32.73
HDMapNet + NMP 44.15 20.95 46.07 37.05
△ mIoU +3.11 +4.72 +5.14 +4.32

LSS∗ 45.19 26.90 47.27 39.78
LSS∗ + NMP 50.20 30.66 53.56 44.80
△ mIoU +5.01 +3.76 +6.29 +5.02

BEVFormer∗ 49.51 28.85 50.67 43.01
BEVFormer∗ + NMP 55.01 34.09 56.52 48.54
△ mIoU +5.50 +5.24 +5.95 +5.53

ments:road boundary, lane divider, and pedestrian crossing
on the nuScenes dataset.

4.1. Implementation Details

Base models. We primarily perform our experiments us-
ing the BEVFormer model [12] (the version excluding the
temporal aspect), selected for its strength in BEV feature
extraction abilities and its exceptional performance in map
semantic segmentation. To validate the broad applicability
of our methods, as shown in Table 1 and 2, we incorpo-
rate our NMP paradigm into four recently proposed camera-
based map semantic segmentation and detection methods,
which serve as our baseline models: HDMapNet [11], LSS
[23], BEVFormer [12], and VectorMapNet [15]. Each of
these methods implements distinct 2D–3D feature-lifting
strategies: MLP-based unprojection is adopted by HDMap-
Net, depth-based unprojection by LSS, geometry-aware
transformer-like models by BEVFormer, and homography-
based unprojection by VectorMapNet. For the comparisons
presented in Table 4 and Table 7, we only use the GRU
fusion module.

C2P Attention. For all linear layers within the current-to-
prior attention module, we set the dimension of the features
to 256. For patching, we use a patch size of 10 × 10, corre-
sponding to a 3m × 3m area in BEV. This setting preserves
local spatial information while conserving parameters.

Global Map Resolution. We use a default map resolution
of 0.3m for the rasterized neural map priors for all experi-
ments and conduct an ablation study on the resolution in
Table 7.



Table 2. Quantitative analysis of vectorized map detection. By
adding prior knowledge, the NMP boosts the performance of Vec-
torMapNet.

Model
Average Precision

APDivider APCrossing APBoundary mAP

VectorMapNet 47.3 36.1 39.3 40.9
VectorMapNet + NMP 49.6 42.9 41.9 44.8
△ AP +2.3 +6.8 +2.6 +3.9

Table 3. Comparison of model performance at different BEV
ranges. As the perception range increases, the online method per-
formance declines.; NMP significantly improves the results.

BEV Range + NMP
mIoU

Divider Crossing Boundary All

60m× 30m
X 49.51 28.85 50.67 43.01
✓ 55.01 34.09 56.52 48.54

△ mIoU +5.50 +5.24 +5.95 +5.53

100m× 100m
X 43.41 29.07 56.57 43.01
✓ 49.51 32.67 59.94 47.37

△ mIoU +6.10 +3.60 +3.60 +4.36

160m× 100m
X 41.21 26.42 51.74 39.79
✓ 46.85 29.25 57.22 44.44

△ mIoU +5.64 +2.83 +5.48 +4.65

Table 4. Comparison of intra-trip fusion and inter-trip fusion.

Intra or Inter Trips
mIoU

Divider Crossing Boundary All

Baseline 49.51 28.85 50.67 43.01
Intra-trip fusion 51.87 30.34 53.74 45.31(+2.30)
Inter-trip fusion 53.41 31.92 55.15 46.82(+3.81)

Table 5. Performance in adverse weather conditions.

Weather + NMP
mIoU

Divider Crossing Boundary All

Rain
X 50.25 26.90 44.54 40.56
✓ 54.64 30.62 54.19 46.48

△ mIoU +4.39 +3.72 +9.65 +5.92

Night
X 51.02 21.17 48.99 40.39
✓ 54.66 33.78 55.92 48.12

△ mIoU +3.64 +12.61 +6.93 +7.73

NightRain
X 55.76 00.00 47.60 34.45
✓ 61.22 00.00 50.84 37.35

△ mIoU +5.46 +00.00 +3.24 +2.90

Normal
X 49.27 29.49 52.11 43.62
✓ 53.46 35.27 57.75 48.82

△ mIoU +4.19 +5.78 +5.64 +5.20

4.2. Neural Map Prior Helps Online Map Inference

In this section, we show that the effectiveness of NMP is
agnostic to various model architectures and evaluation met-
rics. To illustrate this, we integrate NMP into the aforemen-

tioned four base models: HDMapNet, LSS, BEVFormer,
and VectorMapNet. We use the same hyperparameter set-
tings as in their original designs. During training, we freeze
all the modules before the BEV features and only train the
C2P attention module, the GRU, the local PE, and the de-
coder. For testing, all samples are arranged chronologically.
As evidenced in Table 1 and Table 2, NMP consistently im-
proves map segmentation and detection performance com-
pared to the baseline models. Qualitative results are shown
in Figure 4. These findings suggest that NMP is a generic
approach that can potentially be applied to other mapping
frameworks.

4.3. Neural Map Prior Helps to See Further

Conventional maps used in autonomous driving systems
provide crucial information about roads extending beyond
the line of sight, aiding in navigation, planning, and in-
formed decision-making. However, the recent adoption of
onboard cameras for online map prediction as an alterna-
tive approach has introduced a limitation in the prediction
range. This limitation arises due to the low resolution of
distant areas in the captured images. To overcome this lim-
itation, our proposed NMP enables an extended reach for
online map prediction. Specifically, the NMP leverages
prior history information generated by other trips, encap-
sulating rich contextual details about the scenes and signifi-
cantly augmenting the capabilities of online map prediction.
This enhancement is demonstrated in Table 3, which con-
sistently shows improved segmentation results compared to
the baseline methods across various BEV ranges, including
60m× 30m, 100m× 100m, and 160m× 100m.

4.4. Inter-trip Fusion is better than Intra-trip Fu-
sion

In Table 4, we show the effectiveness of intra-trip fu-
sion versus inter-trip fusion for map construction. Intra-trip
refers to the scenario where the fusion is limited to a single
traversal, while the inter-trip fusion model uses map priors
generated from multiple traversals at the same location. The
findings indicate that the integration of multi-traversal prior
information is more helpful for accurate map construction,
highlighting the significance of using multiple traversals.

4.5. Neural Map Prior is more helpful under Ad-
verse Weather Conditions

Autonomous vehicles face challenges when driving in
bad weather conditions or low light conditions, such as rain
or night driving, which may impede accurate road informa-
tion identification. However, our method, NMP, captures
and retains the road’s appearance under optimal weather
and lighting conditions, thereby equipping the vehicle with
enhanced and reliable information for precise road percep-
tion during current trips. As shown in Table 5, the applica-



Table 6. Ablation on the fusion components. MA stands for Moving Average. Local PE stands for the positional embedding proposed in
§ 3.1. CA stands for the C2P Attention proposed in § 3.1 and GRU stands for gated recurrent units proposed in § 3.2.

Component mIoU
Name MA GRU Local PE CA Divider Crossing Boundary All

A 49.51 28.85 50.67 43.01
B ✓ 52.19(+2.68) 33.70(+4.85) 55.34(+4.67) 47.07(+4.06)
C ✓ 53.22(+3.71) 31.46(+2.61) 55.93(+5.26) 46.87(+3.86)
D ✓ 53.25(+3.74) 33.13(+4.28) 55.15(+4.48) 47.17(+4.16)
E ✓ ✓ 52.96(+3.45) 34.13(+5.28) 56.14(+5.47) 47.74(+4.73)
F ✓ ✓ 55.05(+3.74) 31.37(+2.52) 56.19(+5.52) 47.53(+4.52)
G ✓ ✓ ✓ 55.01(+5.50) 34.09(+5.24) 56.52(+5.85) 48.54(+5.53)

Table 7. Ablation on the global map resolution. 0.3m × 0.3m is
a good design choice that balances storage size and accuracy.

NMP Grid Resolution
mIoU

Divider Crossing Boundary All

Baseline 49.51 28.85 50.67 43.01
0.3m × 0.3m 53.22 31.46 55.93 46.87(+3.86)
0.6m × 0.6m 52.42 31.63 54.74 46.26(+3.25)
1.2m × 1.2m 51.36 30.24 52.78 44.79(+1.78)

Table 8. Performance on Boston split. The original split con-
tains unbalanced historical trips for the training and validation
sets; Boston split is more balanced.

Data Split + NMP
mIoU

Divider Crossing Boundary All

Boston Split
X 26.35 15.32 25.06 22.24
✓ 33.04 21.72 32.63 29.13

△ mIoU +6.69 +6.40 +7.57 +6.89

Original Split
X 49.51 28.85 50.67 43.01
✓ 55.01 34.09 56.52 48.54

△ mIoU +5.50 +5.24 +5.95 +5.53

tion of NMP in challenging conditions, including rain and
night-time driving, leads to more substantial improvements
compared to normal weather scenarios. This indicates that
our perception model effectively leverages the necessary in-
formation from the NMP to handle bad weather situations.
However, given the smaller sample size and the limited prior
trip data available for this sample, the improvements were
less significant under night-rain conditions.

4.6. Ablation Studies on Fusion Components

GRU, C2P Attention and Local Position Embedding.
In this section, we evaluate the effectiveness of the com-
ponents proposed in Section 3. For the sake of comparison,
we introduce a simple fusion baseline, termed Moving Av-
erage (MA). In this context, the C2P Attention and GRU
are replaced with a moving average fusion function. The
corresponding update rule can be represented as follows:

plt = αo+ (1− α)olt−1, (3)

where α denotes a manually searched ratio, and other nota-
tions are defined in Section 3.2. Although both GRU and
MA showcase comparable performance enhancements as
updating modules, GRU is preferred due to the elimination
of manual parameter searches required in MA. Both GRU
and CA act as effective feature fusion modules, resulting in
substantial performance enhancements. The slight edge of
C2P attention over GRU indicates that the transformer ar-
chitecture holds a minor advantage in fusing prior feature
contexts. Comparing C to E and F to G in Table 6, we ob-
serve that local PE increases the IoU of the crossing by 2.67
and 2.72, respectively. This suggests that local PE has im-
proved feature fusion, particularly in the challenging cate-
gory of pedestrian crossings. Local PE enables the model to
extract additional information from the map prior, thereby
complementing current observations. In comparisons of C
to F and E to G in Table 6, C2P Attention increases the
IoU of the lane divider by 1.83 and 2.05, respectively, high-
lighting its effectiveness in handling lane structures. The
attention mechanism extracts relevant features based on the
spatial context, leading to a more accurate understanding
of dividers and boundary structures. Overall, the ablation
study confirms the effectiveness of all three proposed com-
ponents for feature fusion and updating.

Map Resolution. We investigate the impact of different
resolutions of global neural priors on the effectiveness of
online map learning in Table 7. High resolutions are pre-
ferred to preserve details on the map. However, there is a
trade-off between storage and resolution. Our experiments
achieved good performance with an appropriate resolution
of 0.3m.

4.7. Dataset Re-split

In the original split of the nuScenes dataset, some sam-
ples lack historical traversals. We adopt an approach sim-
ilar to the one presented in Hindsight [38], to re-split the
trips in Boston, and name it as Boston split. The Boston
split ensures that each sample includes at least one histori-
cal trip, while the training and test samples are geographi-
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Figure 4. Qualitative results. From the first to the fifth row: Ground truth, HDMapNet, BEVFormer, BEVFormer with Neural Map Prior
and GRU weights. We also visualize zt, the attention map of the last step of the GRU fusion process. The model learns to selectively
combine current and prior map features: specifically, when the prediction quality of the current frame is good, the network tends to learn a
larger zt, assigning more weight to the current feature; when the prediction quality of the current frame is poor, usually at intersections or
locations farther away from the ego-vehicle, the network tends to learn a smaller zt for the prior feature.

cally disjoint. To estimate the proximity of two samples, we
calculate the areal overlap, specifically IoU in the bird’s-
eye view, between the field of view of the two traversals.
This approach results in 7354 training samples and 6504
test samples. The comparison of model performance on the
original split and Boston split is shown in Table 8. The im-
provement of NMP observed on the Boston split is greater
compared to the original split.

4.8. Map Tiles

We use map tile as the storage format for our global
neural map prior. In urban environments, buildings gener-
ally occupy a substantial portion of the area, whereas road-
related regions account for a smaller part. To prevent the
map’s storage size from expanding excessively in propor-
tion to the physical scale of the city, we design a storage
structure that divides the city into sparse pieces indexed by
their physical coordinates. It consumes 70% less memory
space than dense tiles. Furthermore, each vehicle does not
need to store the entire city map; instead, it can download
map tiles on demand. The trained model remains fixed, but

these map tiles are updated, integrated, and uploaded to the
cloud asynchronously. As more trip data is collected over
time, the map prior becomes broader and of better quality.

5. Conclusion

In this paper, we introduce a novel system, Neural Map
Prior, which is designed to enhance online learning of HD
semantic maps. NMP involves the joint execution of global
map prior updates and local map inference for each frame
in an incremental manner. A comprehensive analysis on
the nuScenes dataset demonstrates that NMP improves on-
line map inference performance, especially in challenging
weather conditions and extended prediction horizons. Fu-
ture work includes learning more semantic map elements
and 3D maps.
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