
Neural Map Prior for Autonomous Driving

Xuan Xiong1 Yicheng Liu1 Tianyuan Yuan2 Yue Wang3 Yilun Wang2 Hang Zhao2,1*

1Shanghai Qi Zhi Institute 2IIIS, Tsinghua University 3MIT

Abstract

High-definition (HD) semantic maps are crucial for au-
tonomous vehicles navigating urban environments. Tra-
ditional offline HD maps, created through labor-intensive
manual annotation processes, are both costly and incapable
of accommodating timely updates. Recently, researchers
have proposed inferring local maps based on online sensor
observations; however, this approach is constrained by the
sensor perception range and is susceptible to occlusions. In
this work, we propose Neural Map Prior (NMP), a neu-
ral representation of global maps that facilitates automatic
global map updates and improves local map inference per-
formance. To incorporate the strong map prior into local
map inference, we employ cross-attention that dynamically
captures correlations between current features and prior
features. For updating the global neural map prior, we
use a learning-based fusion module to guide the network
in fusing features from previous traversals. This design
allows the network to capture a global neural map prior
during sequential online map predictions. Experimental re-
sults on the nuScenes dataset demonstrate that our frame-
work is highly compatible with various map segmentation
and detection architectures and considerably strengthens
map prediction performance, even under adverse weather
conditions and across longer horizons. To the best of our
knowledge, this represents the first learning-based system
for constructing a global map prior.

1. Introduction
Autonomous vehicles require high-definition (HD) se-

mantic maps to accurately predict the future trajectories
of other agents and safely navigate urban streets. How-
ever, most autonomous vehicles depend on labor-intensive
and costly pre-annotated offline HD maps, which are con-
structed through a complex pipeline involving multi-trip
LiDAR scanning with survey vehicles, global point cloud
alignment, and manual map element annotation. Despite
their high precision, the scalability of these offline mapping
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Figure 1. Comparison of semantic map construction methods.
Traditional offline semantic mapping pipelines (the first row) in-
volve a complex manual annotation pipeline and do not support
timely map updates. Online HD semantic map learning methods
(the second row) rely entirely on onboard sensor observations and
are susceptible to occlusions. We propose the Neural Map Prior
(NMP, the third row), an innovative neural representation of global
maps designed to aid onboard map prediction. NMP is incremen-
tally updated as it continuously integrates new observations from
a fleet of autonomous vehicles.

solutions is limited, and they do not support timely updates
when road conditions change. Consequently, autonomous
vehicles may rely on out-of-date maps, negatively impact-
ing driving safety. Recent research has explored alterna-
tive methods for learning HD semantic maps using onboard
sensor observations, such as camera images and LiDAR
point clouds [11, 13, 15]. These methods typically use deep
learning techniques to infer map elements in real-time, ad-
dressing the map update issue associated with offline maps.
However, the quality of the inferred maps is generally infe-
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rior to pre-constructed global maps and may further deterio-
rate under adverse weather conditions and occluded scenar-
ios. The comparison of different semantic map construction
methods is illustrated in Figure 1.

In this work, we propose Neural Map Prior (NMP), a
novel hybrid mapping solution that combines the best of
both worlds. NMP leverages neural representations to build
and update a global map prior, thereby improving map in-
ference performance for autonomous cars. The NMP pro-
cess consists of two primary steps: global map prior up-
date and local map inference. The global map prior is a
sparsely tiled neural representation, with each tile corre-
sponding to a specific real-world location. It is automat-
ically developed by aggregating data from a fleet of self-
driving cars. Onboard sensor data and the global map prior
are then integrated into the local map inference process,
which subsequently refines the map prior. These procedures
are interconnected in a feedback loop that grows stronger as
more data is collected from the vast number of vehicles nav-
igating the roads daily. One example is shown in Figure 2.

Technically, the global neural map prior is defined as
sparse map tiles initialized from an empty state. For each
online observation from an autonomous vehicle, a neural
network encoder first extracts local Bird’s-Eye View (BEV)
features. These features are then refined using the corre-
sponding BEV prior feature derived from the global NMP’s
map tile. The improved BEV features enable us to infer the
local semantic map and update the global NMP. As the ve-
hicles traverse through the various scenes, the local map in-
ference phase and the global map prior update step mutually
reinforce each other, improving the quality of the predicted
local semantic map and maintaining a more complete and
up-to-date global NMP.

We demonstrate that NMP can be readily applied to var-
ious state-of-the-art HD semantic map learning methods to
enhance accuracy. Experiments on the public nuScenes
dataset reveal that by integrating NMP with cutting-edge
map learning techniques, our pipeline improves perfor-
mance by +4.32 mIoU for HDMapNet, +5.02 mIoU for
LSS, +5.50 mIoU for BEVFormer, and +3.90 mAP for Vec-
torMapNet.

To summarize, our contributions are as follows:

1. We propose a novel mapping paradigm named Neural
Map Prior that combines offline global map mainte-
nance and online local map inference, while local in-
ference demands similar computational and memory
resources as previous single-frame systems.

2. We propose simple and efficient current-to-prior atten-
tion and GRU modules adaptable to mainstream HD
semantic map learning methods and boost their map
prediction results.

3. We evaluate our method on the nuScenes dataset

across different map elements and four map segmen-
tation/detection architectures and demonstrate signif-
icant and consistent improvements. Moreover, our
findings show notable progress in challenging situ-
ations involving adverse weather conditions and ex-
tended perception ranges.

2. Related Works

LiDAR SLAM-Based Mapping. Autonomous driving sys-
tem requires an understanding of road map elements, in-
cluding lanes, pedestrian crossing, and traffic signs, to nav-
igate the world. Such map elements are typically provided
by pre-annotated High-Definition (HD) semantic maps in
existing pipelines [27]. Most current HD semantic maps are
manually or semi-automatically annotated on LiDAR point
clouds of the environment, merged from LiDAR scans col-
lected from survey vehicles equipped with high-end GPS
and IMU. SLAM algorithms are the most commonly used
algorithms to fuse LiDAR scans into a highly accurate and
consistent point cloud. First, to match LiDAR data at two
nearby timestamps, pairwise alignment algorithms such as
ICP [1], NDT [2], and their variants [30] are employed, us-
ing either semantic [40] or geometry information [24]. Sec-
ond, accurately estimating the poses of the ego vehicles is
critical for building a globally consistent map and is formu-
lated as either a non-linear least-square problem [10] or a
factor graph [7]. Yang et al. [36] presented a method for re-
constructing city-scale maps based on pose graph optimiza-
tion under the constraint of pairwise alignment factors. To
reduce the cost of manual annotation of semantic maps, Jian
et al. [9] proposed several machine-learning techniques for
extracting static elements from fused LiDAR point clouds
and cameras. However, maintaining an HD semantic map
remains a laborious and costly process due to the require-
ment for high precision and timely updates. In this paper,
we propose using neural map priors as a novel mapping
paradigm to replace human-curated HD maps, supporting
timely updates to the global map prior and enhancing local
map learning, potentially making it a more scalable solution
for autonomous driving.
Semantic Map Learning. Semantic map learning consti-
tutes a fundamental challenge in real-world map construc-
tion and has been formulated as a semantic segmentation
problem in [18]. Various approaches have been employed
to address this issue, including aerial images in [19], Li-
DAR point clouds in [35], and HD panoramas in [32].
To enhance fine-grained segmentation performance, crowd-
sourcing tags have been proposed in [33]. Recent stud-
ies have concentrated on deciphering BEV semantics from
onboard camera images [17, 37] and videos [4]. Rely-
ing solely on onboard sensors for model input poses a chal-
lenge, as the inputs and target map belong to different co-
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Figure 2. Demonstration of NMP for autonomous driving in adverse weather conditions. Ground reflections during rainy days make
online HD map predictions harder, posing safety issues for an autonomous driving system. NMP helps to make better predictions, as it
incorporates prior information from other vehicles that have passed through the same area on sunny days.

ordinate systems. Cross-view learning methodologies, such
as those found in [5,11,21,23,26,28,34,41], exploit scene
geometric structures to bridge the gap between sensor in-
puts and BEV representations. Our proposed method capi-
talizes on the inherent spatial properties of BEV features as
a neural map prior, making it compatible with a majority of
BEV semantic map learning techniques. Consequently, this
approach holds the potential to enhance online map predic-
tion capabilities.
Neural Representations. Recently, advances have been
made in neural representations [8, 14, 20, 22, 29, 38]. Neu-
ralRecon [31] presents an approach for implicit neural 3D
reconstruction that integrates reconstruction and fusion pro-
cesses. Unlike traditional methods that first estimate depths
and subsequently perform fusion offline. Similarly, our
work learns neural representation by employing the en-
coded image features to predict the map prior through a
neural network.

3. Neural Map Prior

The aim of this work is to improve local map estimation
performance by leveraging a global neural map prior. To
achieve this, we propose a pipeline, depicted in Figure 3,
which is specifically designed to concurrently train both
the global map prior update and local map learning while
integrating a fusion component. Moreover, we address the
memory-intensive challenge associated with storing fea-
tures of urban streets by introducing a sparse tile format for
the global neural map prior, details provided in Section 4.8.

Problem Setup. Our model operates on typical au-
tonomous driving systems equipped with an array of
onboard sensors, such as surround-view cameras and
GPS/IMU, for precise localization. We assume a single-
frame setting, similar to [11], which adopts a BEV encoder-

decoder model for inferring local semantic maps. The BEV
encoder is denoted as Fenc, and the decoder is denoted as
Fdec. Additionally, we create and maintain a global neural
map prior pg ∈ RHG×WG×C , where HG and WG represent
the height and width of the city, respectively. Each obser-
vation consists of input from the surrounding cameras I and
the ego vehicle’s position in the global coordinate system
Gego ∈ R4×4. We can transform the local coordinate of
each pixel of the BEV, denoted as lego ∈ RH×W×2 (where
H and W denote the size of the BEV features), to a fixed
global coordinate system using Gego. This transformation
results in pego ∈ RH×W×2. Initially, we acquire the online
BEV features o = Fenc(I) ∈ RH×W×C , where C repre-
sents the network’s hidden embedding size. We then query
the global prior pg using the ego position pego to obtain the
local prior BEV features plt−1 ∈ RH×W×C . A fusion func-
tion is subsequently applied to the online BEV features and
the local prior BEV features to yield refined BEV features:

frefine = Ffuse(o, p
l
t−1), frefine ∈ RH×W×C . (1)

Finally, the refined BEV features are decoded into the fi-
nal map outputs by the decoder Fdec. Simultaneously, the
global map prior pg is updated using frefine. The global neu-
ral network prior acts as an external memory, capable of
incrementally integrating new information and simultane-
ously offering knowledge output. This dual functionality
ultimately leads to improved local map estimation perfor-
mance.

3.1. Local Map Learning

In order to accommodate the dynamic nature of road
networks in the real world, advanced online map learning
algorithms have recently been developed. These methods
generate semantic map predictions based solely on data
collected by onboard sensors. In contrast to earlier ap-
proaches, our proposed method incorporates neural priors
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Figure 3. The model architecture of NMP. The top yellow box illustrates the online HD map learning process, which takes images as
input and processes them through a BEV encoder and decoder to generate map segmentation results. Within the green box, customized
fusion modules—comprising C2P attention and GRU—are designed to effectively integrate prior map features between the encoder and
decoder, subsequently decoded to produce the final map predictions. In the bottom blue box, the model queries map tiles that overlap with
the current BEV feature from storage. After the update, the neural map is returned to the previously extracted map tiles.

to bolster accuracy. As road structures on maps are subject
to change, it is imperative that recent observations take
precedence over older ones. To emphasize the importance
of current features, we introduce an asymmetric fusion
strategy that combines current-to-prior attention and gated
recurrent units.

Current-to-Prior Cross Attention. We introduce the
current-to-prior cross-attention mechanism, which employs
a standard cross-attention approach [16] to operate between
current and prior BEV features. Concretely, We divide
each feature into patches and add them with a set of
learnable positional embeddings, which will be described
subsequently. Following this, we transform each patch
into a token using a fully connected layer. Current feature
tokens serve as queries, while prior feature tokens act
as keys and values. A standard cross-attention is then
applied, succeeded by a fully connected layer. Ultimately,
we assemble the output queries to derive the refined BEV
features, which maintain the same dimensions as the input
current features. The resulting refined BEV features are
expected to exhibit superior quality compared to both prior
and current features.

Positional Embedding. It has been observed that the ac-
curacy of predicted maps declines as the distance from the
ego vehicle increases. To address this issue, we propose
the integration of position embeddings, a set of grid-shaped
learnable parameters, into the fusion module. The aim is
to augment the spatial awareness of the fusion module re-
garding the feature positions, empowering it to learn to trust
the current features closer to the ego vehicle and rely more

on the prior features for distant locations. Specifically, two
position embeddings are introduced: PEp ∈ RH×W×C for
the prior features and PEc ∈ RH×W×C for the current fea-
tures, respectively, before the fusion module Ffuse. Here,
H and W represent the height and width of the BEV fea-
tures. These embeddings provide spatial awareness to the
fusion module, effectively allowing it to assimilate infor-
mation from varying feature distances and locations.

3.2. Global Map Prior Update

To update the global map prior with the refined features
generated by the C2P attention module, an auxiliary mod-
ule is introduced, devised to attain a balanced ratio between
the current and prior features. This process is illustrated
in Figure 3. Intuitively, the module regulates the updat-
ing rate of the global map prior. A high update rate may
lead to corruption of the global map prior due to suboptimal
local observations, while a low update rate may result in
the global map prior’s inability to promptly capture changes
in road conditions. Therefore, we introduce a 2D convolu-
tional variant of the Gated Recurrent Unit [6] module into
NMP, serving to balance the updating and forgetting ratio.
Local map prior features plt−1, updated at t−1, are extracted
from the global neural map prior pgt−1. The refined features
generated by the C2P attention module are denoted as o

′
.

Integrating o
′

with the local prior features plt−1, the GRU
yields the new prior features plt at time t. Subsequently,
these features are passed through the decoder to predict the
local semantic map and the global neural map prior pgt is
updated at the corresponding location by directly replacing
them with plt. Let zt denote the update gate, rt the reset



gate, σ the sigmoid function, w∗ the weight for 2D con-
volution, and ⊙ the Hadamard product. Via the following
operations, the GRU fuses o

′
with the prior feature plt−1:

zt = σ(Conv2D([plt−1, o
′
], wz))

rt = σ(Conv2D([plt−1, o
′
], wr))

p̃lt = tanh(Conv2D([rt ⊙ plt−1, o
′
], wh))

plt = (1− zt)⊙ plt−1 + zt ⊙ p̃lt

(2)

Within the GRU, the update gate zt and reset gate rt are
instrumental in determining the fusion of information from
the previous traversal (i.e., prior feature plt−1) with the cur-
rent BEV feature o

′
. Furthermore, they govern the incorpo-

ration of information from the current BEV feature o
′

into
the global map prior feature plt. Operating as a selective at-
tention mechanism using a data-driven approach, the GRU
replaces certain hand-crafted linear updating rules, enabling
the model to better adapt to various road conditions and
mapping scenarios more effectively.

4. Experiments
Datasets. We validate our NMP on the nuScenes
dataset [3], a large-scale autonomous driving benchmark
comprising multiple traversals with precise localization and
annotated HD map semantic labels. The dataset comprises
700 scenes in the train set, 150 in the val set, and 150 in the
test set. Data were collected using a 32-beam LiDAR oper-
ating at 20 Hz and six cameras providing a 360-degree field
of view at 12 Hz. Annotations for keyframes are supplied
at 2 Hz. Each scene lasts 20 seconds, resulting in 28,130
and 6,019 frames for the training and validation sets, re-
spectively.
Metric. The HD semantic learning quality is evaluated
using Mean Intersection over Union (mIoU) and Average
Precision (AP) presented in HDMapNet [11]. Follow-
ing the methodology outlined in HDMapNet, we evaluate
three static map elements: road boundary, lane divider, and
pedestrian crossing on the nuScenes dataset.

4.1. Implementation Details

Base models. We incorporate our NMP paradigm into
four recently proposed camera-based map semantic seg-
mentation/detection methods, which serve as our baselines:
HDMapNet [11], LSS [23], BEVFormer [12], and Vec-
torMapNet [15]. These methods employ four different
2D-3D feature-lifting strategies: MLP-based unprojec-
tion by HDMapNet, depth-based unprojection by LSS,
geometry-aware transformer-like models by BEVFormer,
and homography-based unprojection by VectorMapNet.
Unless otherwise specified, our experiments are conducted
on the BEVFormer model, the version without the temporal

Table 1. Quantitative analysis of map segmentation.The perfor-
mance of online map segmentation methods and their NMP ver-
sions on the nuScenes validation set. By adding prior knowledge,
NMP consistently improves these methods.

Model
mIoU

Divider Crossing Boundary All

HDMapNet 41.04 16.23 40.93 32.73
HDMapNet + NMP 44.15 20.95 46.07 37.05
△ mIoU +3.11 +4.72 +5.14 +4.32

LSS 45.19 26.90 47.27 39.78
LSS + NMP 50.20 30.66 53.56 44.80
△ mIoU +5.01 +3.76 +6.29 +5.02

BEVFormer 49.51 28.85 50.67 43.01
BEVFormer + NMP 55.01 34.09 56.52 48.54
△ mIoU +5.50 +5.24 +5.95 +5.53

Table 2. Quantitative analysis of map detection.The perfor-
mance of map detection method and its NMP version on the
nuScenes validation set. Results show that by adding prior knowl-
edge, the NMP enhances the quality of VectorMapNet.

Model
Average Precision

APDivider APCrossing APBoundary mAP

VectorMapNet 47.3 36.1 39.3 40.9
VectorMapNet + NMP 49.6 42.9 41.9 44.8
△ AP +2.3 +6.8 +2.6 +3.9

aspect, which has strong BEV feature extraction capability
and achieves state-of-the-art map semantic segmentation
results. For the comparisons presented in Table 4 and
Table 7, we utilize only the GRU fusion module.

C2P Attention. For all linear layers within the current-
to-prior attention module, we set the dimension of the
features to 256. For patching, we use a patch size of 10
× 10, corresponding to a 3m × 3m area in BEV. This
setting preserves local spatial information while conserving
parameters. The MLP layer following the cross-attention
module is also a fully connected layer with 256 filters.

Global Map Resolution. We use a default map resolution
of 0.3m for the rasterized neural map priors for all exper-
iments and conduct an ablation study on the resolution in
Table 7.

4.2. Neural Map Prior Helps Online Map Inference

In this section, we show that the efficacy of NMP is ag-
nostic to model architectures and evaluation metrics. To
illustrate this, we add NMP to four base models previ-
ously mentioned: HDMapNet, LSS, BEVFormer, and Vec-
torMapNet. We adhere to the same hyperparameter settings
as in the original designs. During training, we freeze all the
modules before the BEV features and train only the C2P
Attention module, the GRU, the Local PE, and the decoder.



Table 3. Comparison of model performance at different BEV
ranges. As the perception range increases, it is difficult for the on-
line method to achieve good results; NMP significantly improves
the results.

BEV Range + NMP
mIoU

Divider Crossing Boundary All

60m× 30m
X 49.51 28.85 50.67 43.01
✓ 55.01 34.09 56.52 48.54

△ mIoU +5.50 +5.24 +5.95 +5.53

100m× 100m
X 43.41 29.07 56.57 43.01
✓ 49.51 32.67 59.94 47.37

△ mIoU +6.10 +3.60 +3.60 +4.36

160m× 100m
X 41.21 26.42 51.74 39.79
✓ 46.85 29.25 57.22 44.44

△ mIoU +5.64 +2.83 +5.48 +4.65

Table 4. Comparison of intra-trip fusion and inter-trip fusion.

Intra or Inter Trips
mIoU

Divider Crossing Boundary All

Baseline 49.51 28.85 50.67 43.01
Intra-trip fusion 51.87 30.34 53.74 45.31(+2.30)
Inter-trip fusion 53.41 31.92 55.15 46.82(+3.81)

Table 5. Performance in adverse weather conditions.

Weather + NMP
mIoU

Divider Crossing Boundary All

Rain
X 50.25 26.90 44.54 40.56
✓ 54.64 30.62 54.19 46.48

△ mIoU +4.39 +3.72 +9.65 +5.92

Night
X 51.02 21.17 48.99 40.39
✓ 54.66 33.78 55.92 48.12

△ mIoU +3.64 +12.61 +6.93 +7.73

NightRain
X 55.76 00.00 47.60 34.45
✓ 61.22 00.00 50.84 37.35

△ mIoU +5.46 +00.00 +3.24 +2.90

Normal
X 49.27 29.49 52.11 43.62
✓ 53.46 35.27 57.75 48.82

△ mIoU +4.19 +5.78 +5.64 +5.20

For testing, all samples are sorted chronologically. As evi-
denced in Table 1 and Table 2, NMP consistently improves
map segmentation and detection performance over baseline
counterparts. Qualitative results can be found in Figure 4.
They indicate that the NMP is generic and could potentially
be applied to other map learning frameworks as well.

4.3. Neural Map Prior Helps to See Further

One traditional role of maps is to provide information
about roads beyond the horizon, which is essential for
downstream navigation and planning and aids in making in-
formed decisions. Our proposed neural map prior serves

this vital function by allowing onboard map inference to
extend its range. As shown in Table 3, our neural map
prior consistently improves the segmentation results of the
map for the baseline methods for BEV range spanning
60m× 30m, 100m× 100m, and 160m× 100m. Camera-
based map segmentation and detection are typically consid-
ered challenging in the most distant regions of the map from
the ego vehicle, as these areas only occupy a few pixels in
the image. Therefore, incorporating the prior history of the
scenes is crucial for enhancing map segmentation and de-
tection performance.

4.4. Inter-trip Fusion is better than Intra-trip Fu-
sion

In Table 4, we analyze the relative importance of intra-
trip information versus inter-trip information. Specifically,
intra-trip information refers to the scenario where the avail-
able map prior is constrained to a single traversal, whereas
the inter-trip information model uses map priors generated
from any traversals at the same location. The results sug-
gest that incorporating multi-traversal prior information is
more critical for map construction, as the performance of
the intra-trip model is inferior compared to the inter-trip
one.

4.5. Neural Map Prior is more helpful under Ad-
verse Weather Conditions

Autonomous vehicles inevitably encounter challenges
when driving in adverse weather conditions, such as rain
or night driving, which can make it challenging for the
vehicle to identify road information accurately. However,
the Neural Map Prior obtained under better weather and
lighting conditions can provide more reliable information
for the vehicle to perceive road information accurately. As
shown in Table 5 that using the neural map prior in adverse
weather conditions, such as rain and night driving, leads
to more substantial improvements than in normal weather
conditions, indicating that our model effectively extracts
the necessary information from the NMP to handle adverse
weather scenarios. However, the improvement was less
significant during night-rain conditions due to the limited
available map prior information and a smaller sample size.

4.6. Ablation Studies on Fusion Components

GRU, C2P Attention and Local Position Embedding. In
this section, we evaluate the effectiveness of the compo-
nents proposed in Section 3. For comparison purposes, we
introduce a simple fusion baseline, referred to as Moving
Average (MA). MA replaces C2P Attention and GRU with
a moving average fusion function. The update rule can be
expressed as:

plt = αo+ (1− α)olt−1, (3)



Table 6. Ablation on the fusion components. MA stands for Moving Average. Local PE stands for the positional embedding proposed in
§ 3.1. CA stands for the C2P Attention proposed in § 3.1 and GRU stands for gated recurrent units proposed in § 3.2.

Component mIoU
Name MA GRU Local PE CA Divider Crossing Boundary All

A 49.51 28.85 50.67 43.01
B ✓ 52.19(+2.68) 33.70(+4.85) 55.34(+4.67) 47.07(+4.06)
C ✓ 53.22(+3.71) 31.46(+2.61) 55.93(+5.26) 46.87(+3.86)
D ✓ 53.25(+3.74) 33.13(+4.28) 55.15(+4.48) 47.17(+4.16)
E ✓ ✓ 52.96(+3.45) 34.13(+5.28) 56.14(+5.47) 47.74(+4.73)
F ✓ ✓ 55.05(+3.74) 31.37(+2.52) 56.19(+5.52) 47.53(+4.52)
G ✓ ✓ ✓ 55.01(+5.50) 34.09(+5.24) 56.52(+5.85) 48.54(+5.53)

Table 7. Ablation on the resolution for Map: 0.3m × 0.3m is
the good design choice that balances storage size and accuracy.

NMP Grid Resolution
mIoU

Divider Crossing Boundary All

Baseline 49.51 28.85 50.67 43.01
0.3m × 0.3m 53.22 31.46 55.93 46.87(+3.86)
0.6m × 0.6m 52.42 31.63 54.74 46.26(+3.25)
1.2m × 1.2m 51.36 30.24 52.78 44.79(+1.78)

Table 8. Performance on Boston split. The original split con-
tains unbalanced historical trips for the training and validation
sets; Boston split is more balanced.

Data Split + NMP
mIoU

Divider Crossing Boundary All

Boston Split
X 26.35 15.32 25.06 22.24
✓ 33.04 21.72 32.63 29.13

△ mIoU +6.69 +6.40 +7.57 +6.89

Original Split
X 49.51 28.85 50.67 43.01
✓ 55.01 34.09 56.52 48.54

△ mIoU +5.50 +5.24 +5.95 +5.53

where α denotes a manually searched ratio and other nota-
tions are defined in Section 3.2. Although both GRU and
MA exhibit similar performance enhancements as updating
modules, GRU is favored due to the elimination of manual
parameter searches required in MA.

Table 6 illustrates that C2P Attention, Local PE, and
GRU are all essential in enhancing online map prediction
performance. Both GRU and CA act as effective feature
fusion modules, leading to notable enhancements. CA
slightly outperforms GRU, indicating that the transformer
holds a minor advantage in fusing prior feature contexts.

Comparing C to E and F to G, Local PE increases the IoU
of the crossing by 2.67 and 2.72, respectively, suggesting
that Local PE improved feature fusion, particularly in the
challenging pedestrian crossing category. Local PE enables
the model to extract additional information from the map
prior, complementing current observations. In comparisons
of C to F and E to G, CA boosts the IoU of the lane divider

by 1.83 and 2.05, respectively, highlighting its capability to
handle lane structures. The attention mechanism extracts
relevant features from the spatial context, leading to a more
accurate understanding of divider and boundary structures.
The ablation study confirms the effectiveness of all three
proposed components for feature fusion and updating.

Map Resolution. We investigate the impact of different
resolutions of global neural priors on the effectiveness of
online map learning in Table 7. High resolutions are pre-
ferred to preserve details on the map. However, there is a
trade-off between storage and resolution. Our experiments
achieved good performance with an appropriate resolution
of 0.3m.

4.7. Generalization

The improvement of neural network priors for online
map inference is attributed to the generation of neural pri-
ors from other trips, which provide closer observations and
complementary perspectives to enable the current observa-
tion to “see” further or bypass obstacles. However, data
devoid of past trip observations cannot benefit from the im-
provement offered by neural network priors. The nuScenes
dataset was not originally designed to evaluate the effi-
cacy of utilizing historical traversals. Some samples in the
datasets lack past traversals. Thus, we follow the approach
presented in Hindsight [39] and re-split the datasets ensur-
ing each training and test sample strives to possess one past
trip, with geographically disjoint sequences in the training
and test sets. Our split differs from Hindsight in that our
proposed method for identifying historical trips is more pre-
cise, as we accurately calculate the overlap between his-
torical and current frames instead of merely comparing the
overall proximity of the two traversals. This results in
7354/6504 training/test samples in the nuScenes dataset. As
demonstrated in Table 8, we observe that the baseline result
of the Boston split is lower than the original split. The prob-
lem of poor generalization of map learning has also been
noted in the UniFormer [25]. However, the improvement
observed in the Boston split with the neural map prior is
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Figure 4. Qualitative results. From the first to the fifth row: Ground truth, HDMapNet, BEVFormer, BEVFormer with Neural Map Prior
and GRU weights. We also visualize zt, the attention map of the last step of the GRU fusion process. The model learns to selectively
combine current and prior map features: specifically, when the prediction quality of the current frame is good, the network tends to learn a
larger zt, assigning more weight to the current feature; when the prediction quality of the current frame is poor, usually at intersections or
locations farther away from the ego-vehicle, the network tends to learn a smaller zt for the prior feature.

greater than that of the original split, suggesting that the
poor generalization problem in map learning can be allevi-
ated to a certain extent by our method.

4.8. Map Tiles

We use map tile as the storage format for our global
neural map prior. In urban environments, buildings gener-
ally occupy a substantial portion of the area, whereas road-
related regions account for a smaller part. To prevent the
map’s storage size from expanding excessively in propor-
tion to the physical scale of the city, we designed a storage
structure that divides the city into sparse pieces indexed by
their physical coordinates. For example, in the nuScenes
dataset, the Boston map covers an urban area with 2 km
in height and 1.5 km in width. If we choose a feature di-
mension of 256 channels for the neural map prior, a 0.3m
resolution for the tiles, and each tile has a size of 69m ×
49m, it would take 38 GB to store the whole map features.
Practically, not all map tiles overlap with roads. By remov-
ing those offroad map tiles, the map size reduces to 11 GB.
Furthermore, each vehicle does not need to store the entire

city map; instead, it can download map tiles on demand.
The trained model remains fixed, but these map tiles

are updated, integrated, and uploaded to the cloud asyn-
chronously. As more trip data is collected over time, the
map prior becomes broader and of better quality.

5. Conclusion
In this paper, we present a novel system, Neural Map

Prior, designed to aid online HD semantic map learning.
The core concept involves jointly performing global map
prior updates and local map inference for each frame in-
crementally, utilizing C2P-Attention and GRU. We propose
sparse map tiles as a memory-efficient approach for main-
taining map priors, enabling low-latency on-board comput-
ing. Comprehensive analysis of the large-scale nuScenes
dataset demonstrates that Neural Map Prior improves map
prediction performance in adverse weather and extends the
prediction horizon. We believe that Neural Map Prior opens
up new possibilities for learning-based multi-view and self-
driving perception and recognition systems by facilitating
training with downstream tasks.
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