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Transferable equivariant graph neural networks for the
Hamiltonians of molecules and solids
Yang Zhong1,2, Hongyu Yu1,2, Mao Su 1,2, Xingao Gong1,2 and Hongjun Xiang 1,2✉

This work presents an E(3) equivariant graph neural network called HamGNN, which can fit the electronic Hamiltonian matrix of
molecules and solids by a complete data-driven method. Unlike invariant models that achieve equivariance approximately through
data augmentation, HamGNN employs E(3) equivariant convolutions to construct the Hamiltonian matrix, ensuring strict adherence
to all equivariant constraints inherent in the physical system. In contrast to previous models with limited transferability, HamGNN
demonstrates exceptional accuracy on various datasets, including QM9 molecular datasets, carbon allotropes, silicon allotropes,
SiO2 isomers, and BixSey compounds. The trained HamGNN models exhibit accurate predictions of electronic structures for large
crystals beyond the training set, including the Moiré twisted bilayer MoS2 and silicon supercells with dislocation defects,
showcasing remarkable transferability and generalization capabilities. The HamGNN model, trained on small systems, can serve as
an efficient alternative to density functional theory (DFT) for accurately computing the electronic structures of large systems.
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INTRODUCTION
Nowadays machine learning (ML) has a wide range of applications
in molecular and materials science, including the direct prediction
of various properties of materials1–3, the construction of machine
learning interatomic potentials (MLIPs) with quantum mechanical
precision4–7, the high-throughput generation of molecular and
crystal structures8–10, and the construction of more precise
exchange-correlation functionals11,12. However, the determination
of materials’ electronic structure still heavily relies on calculations
based on density functional theory (DFT). Unfortunately, these
methods require a significant amount of time to get the electronic
Hamiltonian matrices through self-consistent iterations and exhibit
poor scalability with respect to system sizes. Semi-empirical tight-
binding (TB) approximations13, such as the Slater-Koster method14,
can reduce a lot of computation compared to the DFT methods.
However, this approach often directly uses the existing or manually
fine-tuned TB parameters and thus cannot accurately reproduce the
electronic structure of general systems. Developing truly transfer-
able, fully data-driven TB models that can be applied across various
materials, geometries, and boundary conditions can reconcile
accuracy with speed but is rather challenging.
Hegde and Brown first used kernel ridge regression (KRR) to learn

semi-empirical tight-binding Hamiltonian matrices15. They success-
fully fitted the Hamiltonian matrix of the Cu system containing only
rotation invariant s orbitals and the diamond system consisting only
of s and p orbitals. Similarly, Wang et al. designed a neural network
model to obtain semi-empirical TB parameters by fitting the band
structures calculated by DFT16. An important feature of the
Hamiltonian matrix is that its components transform equivariantly
with the rotation of the coordinate system. However, none of these
approaches deals with the rotational equivariance of the Hamilto-
nian matrix. Moreover, the two methods are limited to fitting the
empirical model Hamiltonian matrices rather than the true ab initio
tight-binding Hamiltonianmatrices generated by the self-consistent
iteration of ab initio tight-binding methods such as OpenMX17,18

and Siesta19,20.

Because of the spherical harmonic part of the atomic basis
functions, the TB Hamiltonian matrix must satisfy two fundamental
constraints: rotational equivariance and parity symmetry. Due to the
presence of periodic boundary conditions, the tight-binding
Hamiltonian matrix for solids also exhibits translational invariance.
The fundamental symmetry constraints satisfied by the tight-binding
Hamiltonian matrix belong to the E(3) group. The notation E(3)
denotes the Euclidean group in three-dimensional (3D) space, i.e., the
group of rotations, translations, and inversion in 3D space. If a
mapping L(q) is E(3) equivariant, then the following equivariant
condition is satisfied for any rotation or inversion operation ĝ 2 Oð3Þ
and translation operation: Lðĝ � qþ tÞ ¼ ĝ � LðqÞ, where t is the
translation vector. In other words, the mapping L(q) remains invariant
under translation while being equivariant under rotation and
inversion. The tight-binding Hamiltonian matrix H({τi}) can be viewed
as a function of the atomic positions {τi} of the system. Here we take
the rotational equivariance of the Hamiltonian matrix as an example.
When a rotation Q̂ 2 SOð3Þ is applied to the system, the equivariance
between the rotated and original Hamiltonian matrices can be
expressed as Hðfτ0 igÞ ¼ DðQ̂ÞHðfτigÞDðQ̂Þy, where fτ0 ig is the set of
the rotated atomic positions, and D is the Wigner D matrix21,22. It is
crucial for the mapping of atomic coordinates to the Hamiltonian
matrix to satisfy equivariance. If equivariance is not achieved in the
mapping, the Hamiltonian matrix may undergo an unphysical
transformation, resulting in Hðfτ0 igÞ≠DðQ̂ÞHðfτigÞDðQ̂Þy when the
system undergoes any rotation. Non-equivariant models necessitate
a substantial amount of training data to approximately achieve
equivariance by learning how to predict the Hamiltonian matrix in all
possible directions of the system. Non-equivariant models often
struggle with transferability, especially when encountering structures
or configurations that differ significantly from the training set. As a
consequence, they may lack generalization capabilities when applied
to new or complex materials. In contrast, equivariant models possess
a more robust ability for complex structures due to their ability to
capture and preserve symmetries.
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Zhang et al.23 and Nigam et al.24 proposed a method to predict
the ab-initio TB Hamiltonians of small molecules and simple solid
systems by constructing an equivariant kernel in Gaussian Process
Regression (GPR) to parameterize the Hamiltonian matrices. Due
to the fixed kernel and representation used in GPR25–28, its training
accuracy and multi-element generalization ability are typically
inferior to those of deep neural networks like message-passing
neural networks (MPNNs)29–34 when a sufficient number of
training samples are available. Hence, the development of graph
neural networks (GNNs) with the capability to predict the
Hamiltonian matrix of both general periodic and aperiodic
systems emerges as the most favorable approach.
However, traditional GNNs are limited to predicting rotation-

invariant scalars such as energy, band gap, and the like. To predict
equivariant directional properties, GNNs need to encode the
directional information of the system suitably. To make the
predicted Hamiltonian matrices satisfy the rotational equivariance,
Schütt et al. designed the SchNorb neural network architecture by
embedding the direction information of the bonds into the
message-passing function35. This network constructs the TB
Hamiltonian of molecules from the directional edge features of
atom pairs. However, SchNorb needs to learn the rotational
equivariance of the Hamiltonian matrix through data augmenta-
tion, which greatly increases the amounts of training data and
redundant parameters of the network. Unke et al. proposed the
PhisNet model36, which achieved SE(3) equivariant parameteriza-
tion of TB Hamiltonian matrix using GNN based on SO(3)
representations. Their model demonstrated high accuracy on
the Hamiltonian matrices of small molecules such as water and
ethanol. However, it should be noted that the PhisNet model
cannot be considered a universal representation of Hamiltonian
matrices due to its neglect of parity symmetry, which can lead to
significant issues in predicting periodic systems.
Recently, Li et al. proposed a GNN model named DeepH to predict

the TB Hamiltonian matrix by constructing local coordinate systems
in a crystal37. DeepH successfully predicted the TB Hamiltonian
matrices of some simple periodic systems such as graphene and
carbon nanotubes. Their original intention of introducing the local
coordinate system is to solve the rotation equivariance problem of
the Hamiltonian, but DeepH still embeds the local directional
information of interacting atom pairs in the invariant message
passing function, which will undoubtedly increase the number of
redundant parameters of the network but may require less data
augmentation than a fully invariant model without local coordinate
systems. In addition, the hopping distance between two interacting
atoms far exceeds the typical lengths of chemical bonds. Taking the
smallest hydrogen atom as an example, the cutoff radius of the
numerical atomic orbital of the hydrogen atom used by OpenMX is 6
Bohr, so the furthest hopping between any two atomic bases used by
OpenMX in periodic systems can exceed at least 12 Bohr (~6.4 Å), a
distance that even exceeds the lattice parameters of certain crystals.
Therefore, it is difficult to describe such long hopping in a well-
defined local coordinate system.
In this work, we developed a general framework to parametrize

the Hamiltonian matrix by decomposing each block of the
Hamiltonian matrix into a vector coupling of equivariant
irreducible spherical tensors38 (ISTs) with appropriate parity
symmetry. The parametrized Hamiltonian matrix strictly adheres
to rotational equivariance and parity symmetry, and can be further
extended to a parameterized Hamiltonian that satisfies SU(2) and
time-reversal equivariance to accurately fit the Hamiltonian matrix
with spin-orbit coupling (SOC) effects. Based on this universal
parametrized Hamiltonian, we designed the E(3) equivariant
HamGNN model for predicting the TB Hamiltonian matrices of
molecules and solids. HamGNN has demonstrated its universality
for the Hamiltonian matrix, showcasing exceptional accuracy
across various datasets, including QM9 molecular datasets, carbon
allotropes, silicon allotropes, SiO2 isomers, and BixSey compounds.

The trained HamGNN model can predict the Hamiltonian matrices,
energy bands, and wavefunctions of the structures not present in
the training set. The powerful fitting and generalization ability
exhibited by HamGNN enables researchers to efficiently compute
the electronic structures of large-scale crystal systems that were
previously deemed challenging or inaccessible.

RESULTS
E(3) equivariant parametrized Hamiltonian
The core of the electronic structure problem in DFT is to solve the
Kohn-Sham equation for electrons. If the Kohn-Sham Hamiltonian
is represented by numerical atomic orbitals centered on each
atom, such as those defined in packages like OpenMX and Siesta,
then the Kohn-Sham equation can be formulated as a generalized
eigenvalue problem:

HðkÞψnk ¼ εnkS
ðkÞψnk (1)

where HðkÞ
ni limi ;nj ljmj

¼Pnc e
ik�Rnc HðRnc Þ

ni limi ;nj ljmj
and SðkÞni limi ;nj ljmj

¼Pnc

eik�Rnc SðRnc Þ
ni limi ;nj ljmj

are the Kohn-Sham Hamiltonian and overlap

matrices at the point k in the reciprocal space. HðkÞ
ni limi ;nj ljmj

and

SðkÞni limi ;nj ljmj
are obtained by Fourier transform of the real-space TB

Hamiltonian matrix HðRnc Þ
ni limi ;nj ljmj

¼ hϕni limi
ðr� τiÞjĤjϕnj ljmj

ðr� τj �
Rnc Þi and overlap matrix SðRnc Þ

ni limi ;nj ljmj
¼ hϕni limi

ðr� τiÞjϕnj ljmj
ðr� τj

�Rnc Þi, respectively, in the basis of atomic orbitals ϕni limi
at the

site τi and ϕnj ljmj
at the site τj+ Rnc, where Rnc is the shift vector of

the nc-th periodic image cell. Therefore, once we have obtained
the Hamiltonian matrix and overlap matrix in real space, we can
further solve the electronic structure in the whole reciprocal space.
Due to the spherical symmetry of the atomic potential, the

atomic orbital bases as its eigenfunctions not only satisfy the
rotational equivariance under the operation Q ∈ SO (3) but also has
a certain parity symmetry under the inversion operation g∈ {E, I}.
Under a rotary-inversion operation gQ∈ O (3), the TB Hamiltonian
matrix element Hni limi ;nj ljmj in real space becomes (we omit the
notation Rnc for convenience in the following discussion):

H0
ni limi ;nj ljmj

¼ hgQϕni limi
jĤjgQϕnj ljmj

i (2)

The irreducible representation of gQ is σp(g)⊗D(Q), where D(Q) is
the Wigner D matrix and σp(g) is the scalar irreducible representa-
tion of the inversion operation, which is defined as follows

σpðgÞ ¼
1; g ¼ E

p; g ¼ I

�
(3)

Substitute the irreducible representation of gQ into Eq. (2), we
can get

H0
ni limi ;nj ljmj ¼ σpipj ðgÞ

X
μiμj

DðliÞ
miμi

ðQÞDðljÞ
mjμj ðQÞHniliμi ;nj ljμj (4)

where σpipj ðgÞ ¼ σpi ðgÞσpj ðgÞ. We further write the right-hand side
of Eq. (4) in the form of matrix-vector multiplication:

H0
ni limi ;nj ljmj ¼ σpipj ðgÞ

X
μiμj

½Dli ðQÞ � Dlj ðQÞ�mimj ;μiμj
Hni liμi ;nj ljμj (5)

It can be seen from the above equation that each sub-block
Hni liμi ;nj ljμj (jμi j � li , jμjj � lj) of the TB Hamiltonian matrix based on

atomic orbitals can be regarded as a spherical tensor22,38 Tni li ;nj ljμ;pipj �
Hni liμi ;nj ljμj with the parity pipj , which is rotationally equivariant

according to the generalized Wigner D matrix Dl
μmðQÞ ¼

Dli
μimi

ðQÞDlj
μjmj ðQÞ, where l � ðli ; ljÞ, μ � ðμi ; μjÞ, m � ðmi;mjÞ.
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According to the angular momentum theory21,22, Dli ðQÞ �
Dlj ðQÞ is a reducible representation and can be further decom-
posed into the direct sum of several irreducible Wigner Dmatrices:

Dli � Dlj ¼ Djli�lj j 	 Djli�lj jþ1 	 � � � 	 Dliþlj (6)

Combining the parity of the Hamiltonian matrix block ðnili ; njljÞ,
we can get

σpipj ðgÞDli ðQÞ � Dlj ðQÞ ¼
Xliþlj

L¼jli�lj j
	σpipj ðgÞDLðQÞ (7)

According to Eq. (7), Tni li ;nj lj
μ;pipj is reducible and the coupled

irreducible spherical tensor Tni li ;nj lj
L;pipj ;m

in each order L ¼ jli � lj j;
� � � ; li þ lj can be obtained by the vector coupling of Tni li ;nj lj

μ;pipj :

Tni li ;nj lj
L; pipj ;m

¼
Xli
μi¼�li

Xlj
μj¼�lj

CLli lj
mμiμjT

ni li ;nj lj
μ;pipj (8)

where CLli lj
mμiμj is the vector coupling coefficient, namely the

Clebsch-Gordan coefficient. Each IST Tni li ;nj lj
L;pipj ;m

has the parity

symmetry of pipj and satisfies the rotational equivariance of order

L. By inverse linear transformation of Eq. (8), Tni li ;nj lj
μ;pipj can be

constructed from ISTs Tni li ;nj lj
L;pipj ;m

:

Tni li ;nj lj
μ;pipj ¼

Xliþlj

L¼jli�lj j

XL
m¼�L

Cli lj L
μiμjmT

ni li ;nj lj
L;pipj ;m

(9)

Therefore, as long as we find all ISTs corresponding to each
block of the Hamiltonian matrix, we can construct the entire
Hamiltonian matrix in a block-wise manner through Eq. (9). We
construct two O(3) equivariant vectors Ωon

i and Ωoff
ij by the direct

summation of all the ISTs required by the on-site (i ¼ j)
Hamiltonian and the off-site (i ≠ j) Hamiltonian respectively:

Ωon
i ¼

X
ni li

X
n0 i l0 i

Xliþl0 i

L¼jli�l0 i j
	½Tni li ;n0 i l0 i

L;pip0 i ;m
��L�m�L

(10)

Ωoff
ij ¼

X
ni li

X
nj lj

Xliþlj

L¼jli�lj j
	½Tni li ;nj lj

L;pipj ;m
��L�m�L

(11)

The prediction of the Hamiltonian matrix is transformed into the
prediction of Ωon

i and Ωoff
ij , which can be obtained by mapping

from the equivariant features of the nodes and the pair
interactions, respectively. The final parameterized Hamiltonian
can be expressed as:

~Hnilimi ;nj ljmj ¼
~H
on
ni limi ;n0 i l0 im0

i
¼ Pliþl0 i

L¼jli�l0 i j

PL
m¼�L

Cli ;l0 i ;L
mi ;m0

i ;m
Tni li ;n0 i l0 i
L;pip0 i ;m

i ¼ j

~H
off
ni limi ;nj ljmj

¼ Pliþlj

L¼jli�lj j

PL
m¼�L

Cli ;lj ;L
mi ;mj ;mT

ni li ;nj lj
L;pipj ;m

i ≠ j

8>>>><
>>>>:

(12)

The above formula is O(3) equivariant. Since GNN naturally has
translational symmetry, the parameterized Hamiltonian repre-
sented by Ωon

i and Ωoff
ij obtained from GNN has E(3) equivariance.

When the spin-orbit coupling (SOC) effects are considered, the
real-space Hamiltonian matrices are complex-valued and can be
divided into four sub-blocks Ĥsi sj (si ; sj ¼" or #) by the spin degree.
In this case, the complete Hamiltonian matrices satisfy the

following SU(2) rotational equivariance:

hgQðϕni limi
siÞjĤjgQðϕnj ljmj

sjÞi ¼ σpipj ðgÞ
Xli
μi¼�li

Xlj
μj¼�lj

X1=2
s0 i¼�1=2

X1=2
s0 j¼�1=2

ðDðliÞ
miμi

ðQÞDðljÞ
mjμj ðQÞ

Dð1=2Þ

si s0 i ðQÞDð1=2Þ

sj s0 j ðQÞhϕni liμi
s0 ijĤjϕnj ljμj

s0 jiÞ (13)

Although each subblock Ĥsi sj satisfies the O(3) rotational
equivariance, they are coupled to each other under the rotational
operations. Therefore, the four subblocks predicted independently
with the O(3) equivariant parameterized Hamiltonian cannot be
used to construct the complete SU(2) equivariant Hamiltonian with
the SOC effect. In addition, the real and imaginary parts of the
SU(2) equivariant Hamiltonian matrices are also coupled during
rotation, so the complete Hamiltonian cannot be constructed by
using the independently predicted real and imaginary parts. These
methods not only rely on a large number of fitting parameters but
also can not make the constructed Hamiltonian matrices strictly
meet the SU(2) equivariance. To ensure that the SOC effect learned
by the network complies with the physical rules and SU(2)
equivariance, we explicitly express the complete Hamiltonian as
the sum of the spin-less part and the SOC part:

Ĥ ¼ Ĥ � I2 þ ĤSOC (14)

where ĤSOC ¼ 1
2 ξðrÞL̂ � σ̂ ¼ 1

2 ξðrÞðL̂x σ̂x þ L̂y σ̂y þ L̂zσ̂zÞ, which satis-
fies SU(2) rotational equivariance and time-reversal equivariance.
ξ(r) is an invariant coefficient describing the strength of the SOC
effects39. According to the above equation, we can get the
following parameterized Hamiltonian matrices with SOC effect in
the atomic orbitals39,40:

~H
SOC
ni limisi ;nj ljmjsj ¼

~Hni limi ;nj ljmj þ 1
2 ξni li ;nj lj hϕni limi

jL̂zjϕnj ljmj
i si ¼"; sj ¼"

1
2 ξni li ;nj lj ðhϕni limi

jL̂x jϕnj ljmj
i � ihϕni limi

jL̂yjϕnj ljmj
iÞ si ¼"; sj ¼#

1
2 ξni li ;nj lj ðhϕni limi

jL̂x jϕnj ljmj
i þ ihϕni limi

jL̂yjϕnj ljmj
iÞ si ¼#; sj ¼"

~Hni limi ;nj ljmj � 1
2 ξni li ;nj lj hϕni limi

jL̂zjϕnj ljmj
i si ¼#; sj ¼#

8>>>>><
>>>>>:

(15)

Since the matrix representation of the angular momentum
operator hϕni limi

jL̂αjϕnj ljmj
i ¼ hϕni limi

ðriÞjL̂αjϕnj ljmj
ðrj � τjiÞi under

the atomic orbital basis can be directly calculated analytically,
the only learnable parameters in Eq. (15) are ~Hni limi ;nj ljmj and ξni li ;nj lj .
~Hni limi ;nj ljmj can be directly expressed by Eq. (12), and ξni li ;nj lj is an
invariant scalar coefficient that can be mapped from the features
of atom pairs ij.

Network Implementation
As can be seen from the above discussion, each Hamiltonian matrix
block satisfies the rotational equivariance and has a definite parity
under the inversion operation, so we designed an E(3) equivariant
HamGNN model based on MPNN to fit TB Hamiltonian matrix. This
framework directly captures the electronic structure without
expensive self-consistent iterations by constructing local equivariant
representations of each atomic orbit. The network architecture of
HamGNN is shown in Fig. 1a. HamGNN can achieve a direct mapping
from atomic species {Zi} and positions {ri} to TB Hamiltonian matrix.
Based on the equivariant parameterized Hamiltonian matrix

introduced in this work, the prediction of the Hamiltonian matrix is
converted to predicting two reducible equivariant tensors:Ωon

i for on-
site Hamiltonians and Ωoff

ij for off-site Hamiltonians. These tensors
satisfy the rotation and inversion equivariance of the O(3) group,
therefore we need to construct them in the representation of the O(3)
group. HamGNN utilizes equivariant atomic features that are
constructed by the direct sum of O(3) representations with different
rotation orders l. The O(3) representations of rotation order l can
characterize atomic orbitals with angular quantum number l, as they
possess the same rotational equivariance. The atomic features are

Y. Zhong et al.
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refined through orbital convolution layers (shown in Fig. 2b), which
update the atomic features by aggregating equivariant messages
constructed from local chemical environments. After refined by T
orbital convolution layers, the atomic features are used to construct
equivariant pair interaction features via the pair interaction layer
(shown in Fig. 2c). Ωon

i and Ωoff
ij are obtained by representation

transformation of atomic features and pair interaction features,
respectively. The Hamiltonian matrix is finally constructed using Ωon

i
and Ωoff

ij via Eq. (12).
HamGNN first encodes elements, inter-atomic distances, and

relative directions as initial graph embeddings. The atomic
numbers Zi are encoded as one-hot vectors and are subsequently
transformed into initial atomic features through a multilayer
perceptron (MLP) layer. The distance between atom i and its
neighboring atom j within the cutoff radius rc is expanded using
the Bessel basis function41:

BðjrijjÞ ¼
ffiffiffiffi
2
rc

r
sinðnπjrijj=rcÞ

jrijj f cðjrijjÞ (16)

where fc is the cosine cutoff function42, which guarantees physical
continuity for the neighbor atoms close to the cutoff sphere. The list

of atomic neighbors is determined by the cutoff radius of each
atom’s orbital basis. The interatomic distance is expanded by a set
of Bessel functions with n ¼ 1; 2; � � � ;Nb½ �, where Nb is the number
of Bessel basis functions. In this work, Nb is set to 8. The directional
information between atom i and atom j is embedded in a set of real
spherical harmonics fYlf

mf
ð̂rijÞg, which will be used to construct the

rotation-equivariant filter43 in the equivariant convolution functions.
The atomic feature tensor V ¼ Vl0 	 Vl1 	 � � � 	 Vlmax in

HamGNN is represented as a direct sum of different irreducible
representations of the O(3) group up to a maximum rotation order
lmax. The features corresponding to each order can characterize the
atomic orbitals with distinct angular quantum numbers. If the
input structure is rotated, the atomic features will be transformed
by the direct sum of the Wigner Dmatrix, which is represented as a
block diagonal matrix D ¼ Dl0 	 Dl1 	 � � � 	 Dlmax . V

i;t
li ;pi ;ci ;mi

denotes
the tensor element of the equivariant features of atom i in the
orbital convolution layer t, where li ≤ lmax is the rotation order of
the O(3) irreducible representation, pi 2 f1;�1g denotes the
parity of the equivariant components of the order li, �li � mi � li
is the index of each projection of the equivariant representation, ci
is the channel index (the dimension of the features). We use T

Fig. 1 HamGNN architecture and the illustration of its subnetworks. a The overall architecture of HamGNN. This neural network
architecture predicts the Hamiltonian matrix through five steps. The prediction starts from the initial graph embedding of the species,
interatomic distances, and interatomic directions of molecules and crystals. The atomic orbital features with angular momentum l in the local
environment are included in the l-order components of the E(3) equivariant atom features and are refined through T orbital convolution
blocks. In the third step, pair interaction features ωij

l;p;c;m of atomic orbitals are constructed by pair interaction blocks. In the fourth step, the IST
representations of on-site and off-site Hamiltonian matrices are constructed by passing the features of atomic orbitals and pair interactions
through the on-site layer and off-site layer, respectively. The final step is to construct the on-site and off-site Hamiltonian matrices block-by-
block via the parameterized Hamiltonian given by Eq. (12). b Orbital convolution block. The equivariant atomic features that include the
features of atomic orbitals of each angular momentum l are refined by the equivariant message passing and update functions. c Pair
interaction block. This block is used to construct the pair interaction features between the orbitals of two adjacent atoms by equivariant
tensor product. d On-site layer. The equivariant features of atoms are transformed into ISTs of on-site blocks Ωon

i by the on-site layer. e Off-site
layer. The pair interaction features between atomic orbitals are transformed into ISTs of the off-site block Ωoff

ij by the off-site layer. f Residual
block. The residual block is used in the on-site layer and off-site layer to perform a nonlinear equivariant transformation of input features.
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orbital convolution layers to construct the equivariant features of
the atomic orbits in the local environment. In each orbital
convolution layer, the input atomic feature tensor is updated by
aggregating the equivariant messages from neighboring atoms.
Each equivariant message is generated through the coupling of
the feature tensor of neighboring atom j and the convolution
filters in an equivariant manner. The rotation equivariant convolu-
tion filters are constrained to be a product of learnable radial
functions and spherical harmonic functions:

FlmðrijÞ ¼ SðjrijjÞYlf
mf
ð̂rijÞ (17)

where the radial function SðjrijjÞ ¼ MLP½BðjrijjÞ� is a mapping that
transforms the radial basis BðjrijjÞ into the rotation-invariant scalar
weights through a multilayer perceptron. The tensor product
between the feature tensor of the neighboring atom j and the
convolution filter is used to generate the equivariant messages
sent to atom i. A tensor product of representations is a
mathematical operation for combining two given representations
xðl1Þ 2 l1 and yðl2Þ 2 l2 to form another equivariant feature
xðl1Þ � yðl2Þ . The tensor product xðl1Þ � yðl2Þ is reducible and can
be expanded into a direct sum of irreducible representations. The
value for the irreducible representation of rotation degree l 2
fjl1 � l2j; � � � ; l1 þ l2g in the direct sum representation of the
tensor product xðl1Þ � yðl2Þ is given by

ðx � yÞlm ¼
Xl1

m1¼�l1

Xl2
m2¼�l2

Cl;l1;l2
m;m1 ;m2

xl1m1
yl2m2

(18)

where Cl;l1 ;l2
m;m1;m2

are Clebsch-Gordan coefficients. Finally, the atomic
features in each orbital convolution layer are updated by
aggregating the equivariant messages of neighboring atoms
using the following formulas:

mij;t
li ;pi ;c;mi

¼
Xlf

mf¼�lf

Xlj
mj¼�lj

Cli ;lf ;lj
mi ;mf ;mj S

li ;pi ;c
lf ;pf ;lj ;pj

ðjrijjÞYlf
mf
ð̂rijÞVj;t�1

lj ;pj ;c;mj
(19)

Vi;t
li ;pi ;c;mi

¼ Vi;t�1
li ;pi ;c;mi

þ
X
j2NðiÞ

mij;t
li ;pi ;c;mi (20)

The invariant scalar features of the interatomic distances are used
to scale the equivariant output of each rotation order. Sli ;pi ;clf ;pf ;lj ;pj

ðjrijjÞ
is a learnable scalar weight for each filter-feature tensor product
path ðlf ; pf Þ � ðlj; pj; cÞ ! ðli; pi; cÞ. To respect the parity equivar-
iance, each filter-feature tensor product path ðlf ; pf Þ � ðlj; pj; cÞ !
ðli; pi; cÞ satisfies the parity selection rule: pi ¼ pf pj . Equation (20) is
the update function, which aggregates equivariant messages from
neighboring atoms to update the input atomic features. The
updated atomic features are passed to a nonlinear gate activation

function44, which scales the input features equivariantly with the
invariant field (l ≠ 0) of the input features as the gate.
The pair interaction features, which are utilized to construct the off-

site Hamiltonian, are generated by the pair interaction layer. The pair
interaction features are the sum of two parts. The first part is the tensor
product between the features of two interacting atoms i and j:
ðli; pi; cÞ � ðlj ; pj ; cÞ ! ðl; p; cÞ, where l and p denote the rotation
order and the parity of the pair interaction features, respectively. The
second part is the tensor product between the mixed features of atom
pairs ij and the convolution filters: ðl0; p0; cÞ � ðlf ; pf Þ ! ðl; p; cÞ,
where l′ and p′ denote the rotation order and the parity of the mixed
features of atom pairs ij, respectively. The pair interaction features are
finally constructed by the following equation:

ωij
l;p;c;m ¼

Xli
mi¼�li

Xlj
mj¼�lj

Cli ;lj ;l
mi ;mj ;mS

l;p;c
li ;pi ;lj ;pj

ðjrijjÞ
X
c0

Wi
li ;pi ;c;c0V

i;T
li ;pi ;c0;mi

 ! X
c0

Wj
lj ;pj ;c;c0V

j;T
lj ;pj ;c0;mj

 !

þ
Xlf

mf¼�lf

Xl0
m0¼�l0

Cl0;lf ;l
m0;mf ;m

Sl;p;clf ;pf ;l0;p0ðjrijjÞY
lf
mf
ð̂rijÞVij

l0;p0;c;m0 (21)

where Wi
li ;pi ;c;c0 and Wj

lj ;pj ;c;c0 are learnable weight matrices used to

linearly couple the equivariant features from different channels,
Vij
l0;p0;c;m0 ¼

P
c0 W0il0;p0;c;c0Vi;T

l0;p0;c0;m0 þ
P

c0 W0jl0;p0;c;c0 Vj;T
l0;p0;c0;m0 is the

mixed feature tensor of the atomic features Vi;T
li ;pi ;ci ;mi

and Vj;T
lj ;pj ;cj ;mj

.
The on-site layer and off-site layer are used to convert the node

features Vi;T
li ;pi ;ci ;mi

and pair interaction features ωij
l;p;c;m into the

direct sums Ωon
i and Ωoff

ij of the ISTs required to construct on-site
and off-site Hamiltonian blocks, respectively. We add shortcut
connections in the on-site layer and off-site layer and use a norm
activation function that scales the modulus of the irreducible
representations of each order nonlinearly to increase the non-
linear fitting ability of the network. In the last step, the network
uses the ISTs in Ωon

i and Ωoff
ij to construct the on-site and off-site

Hamiltonian blocks through Eq. (12). The final predicted Hermitian
Hamiltonian is obtained by the following symmetrization:

Hnilimi ;nj ljmj ¼
Hon
ni limi ;n0i l0im0i ¼ ð~Hon

ni limi ;n0i l0im0i þ ~H
on

n0i l0im0i ;ni limi

Þ =2i ¼ j

Hoff
ni limi ;nj ljmj

¼ ð~Hoff
ni limi ;nj ljmj

þ ~H
off

nj ljmj ;ni limi

Þ =2i ≠ j

8<
:

(22)

Tests and applications
To assess the accuracy and transferability of HamGNN, we trained
and tested HamGNN on the Hamiltonian matrices and electronic

Fig. 2 Application of HamGNN on molecules in the QM9 dataset. a The comparison between the Hamiltonian matrix elements predicted by
HamGNN and those calculated by OpenMX on the QM9 test set. b Comparison of the orbital energies predicted by HamGNN and those
calculated by OpenMX for four molecules randomly selected from the QM9 test set.
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structures for the periodic and aperiodic systems, including
various molecules, periodical solids, a nanoscale dislocation
defect, and a Moiré superlattice. Previously reported models such
as SchNorb35, PhiSNet36, and DeepH45 are trained and tested on
the slightly perturbed structures from only one configuration each
time. Since HamGNN is based on the universal parameterized
Hamiltonian proposed in this work, our model can be trained and
tested on structures with the same atomic species but different
configurations in the same way as MLIPs.

Molecules. The QM9 dataset46,47 contains 134k stable small
organic molecules made up of CHONF. These small organic
molecules are important candidates for drug discovery. The
development of general ML models for rapid screening of the
electronic structure properties of drug molecules is beneficial for
understanding the mechanisms of drugs and shortening the cycle
of drug development. We calculated the real-space TB Hamilto-
nian matrices using OpenMX for 10,000 randomly selected
molecules from the QM9 dataset. We divided the whole dataset
into the training, validation, and test set with a ratio of 0.8: 0.1: 0.1.
As shown in Fig. 2a, the predicted values exhibit a high degree of
agreement with the DFT-calculated values of the Hamiltonian
matrices for various configurations in the test set. The mean
absolute error (MAE) of the Hamiltonian matrix element predicted
by the trained HamGNN model on the test set is only 1.49 meV.
Please note that all MAEs mentioned in our manuscript refer to the
mean absolute errors between predicted values and ground truth
(DFT values), unless otherwise stated. Each of the orbital energy
calculated by diagonalizing the predicted Hamiltonian matrix
coincides almost exactly with each DFT-calculated orbital energy
(see Fig. 2b), showing high precision and transferability. The
orbital energies calculated by HamGNN and OpenMX for the four
molecules shown in Fig. 2b are listed in Supplementary Table 1.
We also trained HamGNN on the Hamiltonians of several specific

small molecules generated by ab initio molecular dynamics (MD)
and compared the accuracy of HamGNNwith two recently reported
models, PhiSNet36 and DeepH45. The Hamiltonian matrices of these
molecules were calculated by OpenMX and divided into the
training, validation, and test sets in the same way as PhiSNet in
ref. 36. The MAEs of the Hamiltonian matrices predicted by DeepH
are from ref. 45. As can be seen from Table 1, HamGNN achieves the
highest accuracy among the three models. The error of HamGNN as
a function of training epochs on both the training and validation
sets is highly consistent (see Supplementary Discussion 1). The
prediction error of DeepH is higher than that of PhiSNet and
HamGNN because the local coordinate system used by DeepH is not
strictly equivariant. Although SE(3) equivariant PhiSNet shows high
accuracy in predicting the molecules, it is not a universal equivariant
model because it does not satisfy the parity symmetry of the
Hamiltonian matrix strictly. Our tests have revealed that neglecting
parity symmetry can significantly impair its fitting ability for solid
materials (see Supplementary Discussion 2).

Periodic solids. We have collected 426 carbon allotropes from the
Samara Carbon Allotrope Database (SACADA)48 and 30 silicon
allotropes from Materials Project49, each containing no more than
60 atoms in its unit cell. We have also collected 221 SiO2 isomers
from the Materials Project, each containing no more than 80
atoms in its unit cell. We have perturbed each of the collected SiO2

isomers three times, resulting in 663 perturbed SiO2 structures
with a random atomic displacement of 0.1 Å. We performed DFT
calculations using OpenMX to obtain the ab initio TB Hamiltonian
matrices for these carbon allotropes, silicon allotropes, and
perturbed SiO2 isomers. The Hamiltonian matrices in each dataset
were divided into training, validation, and test sets with a ratio of
0.8:0.1:0.1. Three separate HamGNN models were trained on the
carbon allotropes, silicon allotropes, and perturbed SiO2 isomers,
respectively.
The MAEs of the Hamiltonian matrix predicted by HamGNN for

the structures in the test set of carbon allotropes, silicon
allotropes, and SiO2 isomers are 1.55 meV, 2.01 meV, and
2.29meV, respectively. There are tiny variations in model accuracy
for the HamGNN models trained with different initial random
network weights (see Supplementary Discussion 3), indicating the
high stability of HamGNN. The MAE of HamGNN on the carbon
allotropes is even lower than the error (2.0 meV) of DeepH on the
training dataset of only the graphene structures45. Most impor-
tantly, the HamGNN model trained on the carbon allotropes is
transferable and can fit the Hamiltonian matrices of the carbon
allotropes with arbitrary sizes and configurations beyond the
training set. Achieving transferable predictions for the DeepH
model that utilizes local coordinate systems is difficult, as
discussed in Supplementary Discussion 4.
We used pentadiamond50, Moiré twisted bilayer graphene

(TBG), Si (MP-1199894), and SiO2 (MP-1257168) to test the
accuracy and transferability of the HamGNN models trained on
the three datasets. The test structures are shown in Fig. 3a-d.
Pentadiamond is a three-dimensional carbon foam constructed
from carbon pentagons and contains 88 carbon atoms in the unit
cell50. There are 1084 carbon atoms in the twisted bilayer
graphene with a Moiré angle θ ≈ 3.48°. The interlayer spacing of
TBG is about 4.0 Å. The carbon atoms within each layer are
connected by strong covalent bonds, while the layers are stacked
by the weak van der Waals forces. The Si structure labeled MP-
1199894 contains 82 atoms in the unit cell and crystallizes in the
monoclinic C2/c space group. The SiO2 structure labeled MP-
1257168 is characterized by the complex porous structures built
by SiO4 tetrahedra and has 180 atoms in the unit cell. The MAE of
the Hamiltonian matrix elements predicted by HamGNN for the
pentadiamond, TBG, Si (MP-1204046), and SiO2 (MP-667371) is
only 1.54 meV, 3.23 meV, 1.39 meV, and 1.67 meV, respectively.
The high accuracy can be seen in the scatter plots of the predicted
Hamiltonian matrices versus the DFT calculated Hamiltonian
matrices shown in Fig. 3e-h. Although our carbon allotropic
dataset does not contain any bilayer graphene structures,
HamGNN automatically learns van der Waals interactions from
this dataset and successfully predicts the Hamiltonian matrix of
TBG. The energy bands obtained by diagonalizing the predicted
Hamiltonians closely align with those from the DFT calculations, as
shown in Fig. 3i-l.

Dislocation defect. In general, point defects only induce local
structural distortions, so the supercell used for point defect
simulation does not need a very large size and can be calculated
directly using the DFT method51,52. However, as one-dimensional
line defects, edge dislocations induce elastic stress fields in their
surroundings53–55, resulting in significantly greater lattice distor-
tions compared to point defects. Simulating an isolated edge
dislocation necessitates the utilization of a large supercell to
mitigate the strong elastic interactions between the dislocation
and its periodic image. The high density of dislocations in small

Table 1. Comparison of the MAEs of the Hamiltonian matrices
predicted by HamGNN, DeepH, and PhiSNet for the molecule
structures from molecular dynamics trajectories.

Dataset PhiSNet (meV) DeepH (meV) HamGNN (meV)

Water 0.808 1.048 0.760

Ethanol 0.288 0.601 0.195

Malondialdehyde 0.340 0.547 0.270

Uracil 0.487 0.470 0.264

The lowest MAE among the considered models for each subsystem is
displayed in bold.
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supercells may lead to unrealistic lattice distortion and inaccurate
electronic structures. However, the computational complexity of
the large supercells required to simulate the edge dislocations is a
great challenge for DFT methods. HamGNN enables the direct
mapping from structure to the Hamiltonian matrix, providing the
possibility to compute electronic structures of dislocation defects
in large supercells.

In this work, we take an isolated edge dislocation in a large
silicon supercell as an example to demonstrate the high efficiency
of the HamGNN model to simulate nanoscale defects in large
systems. Crystalline silicon has a diamond-type crystal structure,
whose most favorable slip system belongs to the type ½〈110〉
{111}. Taking the {111} plane of silicon as the slip plane, we
constructed an isolated edge dislocation with Burgers vector 1/

Fig. 3 The prediction of HamGNN on several periodic solids that are not present in the training sets. a–d Crystal structures of
pentadiamond, Moiré twisted bilayer graphene (TBG), Si (MP-1199894), and SiO2 (MP-1257168). e–h Comparison of the Hamiltonian matrix
elements predicted by HamGNN and those calculated by OpenMX for pentadiamond, TBG, Si (MP-1199894), and SiO2 (MP-1257168).
i–l Comparison of the energy bands predicted by HamGNN (solid line) and those (dashed line) calculated by OpenMX for pentadiamond, TBG,
Si (MP-1199894), and SiO2 (MP-1257168).
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2 < 110 > , as shown in Fig. 4a. There are 4284 atoms in this
supercell containing an isolated edge dislocation. We utilized the
HamGNN model, which was trained on Si allotropes, to predict the
Hamiltonian matrix of this supercell. Subsequently, we computed
its band structure and charge density of valence band maximum
(VBM) using the predicted Hamiltonian matrix.
The defect energy bands introduced by the dislocation defect

appear within the band gap, as shown in Fig. 4b, which
significantly narrows the band gap of bulk Si. The predicted
valence band maximum (VBM) at the Gamma point is located on
an occupied defect energy band. The VBM wave function shown
in Fig. 4a is mainly distributed in the dislocation core, indicating
that this occupied band is caused by the hanging bonds and
structural distortion in the core. The predicted electronic structure
in the dislocation core is analogous to that obtained from the DFT
simulation for a non-periodical dislocation model containing only
358 atoms56. However, the dangling bonds at the boundaries of
the non-periodical supercell are saturated by hydrogens56, which
may introduce unrealistic electronic states from hydrogens. We
use HamGNN to directly compute the electronic structures of
dislocations in large periodic supercells, thus overcoming the
potential issues arising from the use of small or non-periodic
supercells. With the ability to establish a shortcut from structure to
ab initio Hamiltonian matrix, HamGNN enables direct calculation
of electronic structures for large supercells without the costly SCF
iterations. HamGNN demonstrated exceptional speed and effi-
ciency, taking only 36 seconds to calculate the Hamiltonian matrix
of the silicon supercell containing 4284 atoms on a node
equipped with 80 Intel(R) Xeon(R) Gold 6248 CPU cores. To verify
the reliability of the trained HamGNN model in predicting the
electronic structures for silicon dislocation defects, we constructed
a small silicon supercell containing an edge dislocation defect and
compared the Hamiltonian matrix, energy bands, and the wave
function predicted by HamGNN with those calculated by OpenMX
(see Supplementary Discussion 5).

Moiré superlattice of bilayer MoS2. MoS2 is a 2D transition metal
dichalcogenide (TMD) that has attracted much attention because
it is an excellent semiconductor with a wide range of applications
in the field of electronics and optoelectronics57–60. Different from
monolayer or untwisted bilayer MoS2, the twisted bilayer MoS2
with Moiré angles has been found to have flat bands and shear
solitons57,61–63, which may lead to some interesting physical
phenomena, such as superconducting states, quantum Hall
insulators, Mott-insulating phases. However, the electronic struc-
ture calculation of Moiré twisted bilayer MoS2 by DFT is relatively
expensive due to its large size. To demonstrate the accuracy and

efficiency of HamGNN in replacing DFT for calculating the
electronic structure of Moiré twisted two-dimensional materials,
we conducted a quantitative comparison between the HamGNN
prediction and the DFT calculation for twisted bilayer MoS2 with a
Moiré angle of 3.5°. Before predicting the electronic structure of
the Moiré twisted bilayer MoS2 superlattice, we trained a HamGNN
model using a dataset consisting of 500 untwisted bilayer MoS2
structures, each containing 54 atoms. Each MoS2 bilayer structure
in the dataset has a random interlayer sliding distance of up to 2
angstroms along a random direction. The layer spacing of each
MoS2 bilayer structure in the dataset was randomly shifted by a
maximum of 0.5 angstroms. We used OpenMX to calculate the
Hamiltonian matrices for the untwisted MoS2 bilayer structures,
and divided the dataset into training, validation, and test sets with
a ratio of 0.8: 0.1: 0.1. The MAE of the trained HamGNN on the test
set is only 0.82 meV.
We used OpenMX and the trained HamGNN model to calculate

the Hamiltonian matrix of the twisted bilayer MoS2 with a Moiré
angle of 3.5°, which contains 1626 atoms in a unit cell. HamGNN
and OpenMX performed the calculations on a node with 80
Intel(R) Xeon(R) Gold 6248 CPU cores. HamGNN only took about
21 s, while OpenMX required approximately 73,000 s to complete
this task. This indicates that HamGNN significantly improves the
efficiency of electronic structure calculations. The MAE between
the Hamiltonian matrix predicted by HamGNN and that calculated
by OpenMX is only 0.89 meV. The energy bands, obtained by
diagonalizing the Hamiltonian matrices from HamGNN and
OpenMX, are shown in Fig. 5a. The predicted bands show a high
level of agreement with those computed by OpenMX. Besides, the
appearance of flat bands at the valence band edge and the Dirac
cone at the K point agrees well with the energy bands calculated
by VASP in ref. 61. The spatial distribution of the predicted VBM
wave function, as illustrated in Fig. 5b, exhibits a high degree of
localization around the Moiré patterns, which is consistent with
the computational results obtained from VASP calculations under
LDA and PBE functionals61.
Through the quantitative comparisons, we demonstrate that

HamGNN models trained on small systems can serve as an
efficient alternative to DFT for accurately calculating the electronic
structure of large systems. After being trained on the Hamiltonian
matrices of small untwisted bilayer structures, the HamGNN model
can effectively predict the electronic structure of small-angle
twisted materials, which is computationally expensive for DFT
calculations. The high accuracy and efficiency of HamGNN
demonstrate its immense potential in accelerating the electronic
structure calculations for small-angle twisted bilayers of various
transition metal dichalcogenides (TMDs). In Supplementary

Fig. 4 The electronic structure prediction on silicon dislocation. a Atomic structure and charge density of the valence band maximum
(VBM) of an isolated dislocation in silicon. The atoms on the dislocation plane are colored red. b The energy bands of the dislocation model
along G(0.0, 0.0, 0.0) to Z(0.0, 0.0, 0.5).
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Discussion 6, we have discussed the computational scalability of
HamGNN with respect to system sizes and also compared its
computational efficiency with OpenMX for bilayer MoS2 slabs of
varying twist angles.

BixSey quantum materials. Bi and Se have multiple chemical
valences and can form a set of binary compounds BixSey with
various stoichiometric ratios64,65. Bi is a heavy element whose d
electrons have strong SOC effects. A total of 19 BixSey compounds
can be found on Materials Project49. The compound Bi8Se7 (id: MP-
680214) shown in Fig. 6a, which contains 45 atoms in the unit cell,
was used to test the transferability and accuracy of HamGNN. The
remaining 18 BixSey compounds, which contain no more than 40
atoms in the unit cell, were used to generate the training set for
the network. To increase the size of the training set, we applied a

random perturbation up to 0.02 Å to the atoms of each BixSey
structure to generate 50 perturbed structures and obtained 900
structures in total. These structures were randomly divided into
the training, validation, and test sets with a ratio of 0.8: 0.1: 0.1.
The MAE of the real part of the SOC Hamiltonian predicted by the
trained model for Bi8Se7 is 1.29 meV, and the MAE of the
imaginary part of the SOC Hamiltonian is only 5.0 × 10−7 meV. As
the SOC effect primarily manifests in the imaginary component of
the Hamiltonian matrix, such a low MAE for the imaginary part
indicates that our parameterized SOC Hamiltonian has a strong
fitting ability across various structures. As shown in Fig. 6b, the
predicted energy bands of Bi8Se7 are in good agreement with
those calculated by OpenMX. Although the training set does not
contain any compounds with a stoichiometric ratio of Bi8Se7, the
HamGNN model still accurately predicted the SOC Hamiltonian

Fig. 6 The electronic structure prediction on the BixSey quantum materials. a The crystal structure of Bi8Se7. b Comparison of the energy
bands predicted by HamGNN (solid line) with those calculated by DFT (dashed line) for Bi8Se7. c Schematic representation of the layered
crystal structure of Bi2Se3. d Comparison between the energy gaps at G point predicted by HamGNN with those calculated by DFT for the
Bi2Se3 slab models with various quintuple layers (QLs). e Comparison of the energy bands predicted by HamGNN (solid line) with those
calculated by DFT (dashed line) for Bi2Se3 slab with 6 QLs. f The predicted spin textures of two unoccupied states near the conduction band
minimum (CBM).

Fig. 5 The electronic structure prediction for the twisted bilayer MoS2 with a Moiré angle of 3.5°. a Comparison of the energy bands
predicted by HamGNN and those calculated by OpenMX for the Moiré twisted bilayer MoS2. b The spatial distribution of VBM wave function in
the Moiré twisted bilayer MoS2.

Y. Zhong et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   182 



matrix and energy bands of this structure, demonstrating its high
transferability.
Bi2Se3 is a widely recognized 3D topological insulator material,

which serves as an exceptional platform for exploring quantum
phenomena related to the effects of spin-orbit coupling
(SOC)66–70. Bulk Bi2Se3 is stacked by quintuple layers (QLs) through
the van der Waals (vdW) interaction, as is shown in Fig. 6c. Each QL
layer is composed of five atomic layers of Se-Bi-Se-Bi-Se combined
by strong covalent bonds. As shown in Fig. 6d, the G-point band
gaps predicted by HamGNN exhibit a high degree of agreement
with those obtained from DFT calculations for Bi2Se3 slabs
comprising 1 to 7 QLs. As shown in Fig. 6e, the addition of more
QL layers results in a gradual decrease of the G-point band gap
and a tendency towards linear band dispersion at the G point,
ultimately forming a Dirac cone. The spin textures of the lowest
unoccupied states, located 0.07 eV and 0.23 eV above the
conduction band minimum (CBM), were computed using the
Hamiltonian matrix predicted by HamGNN, as illustrated in Fig. 6f.
The predicted spin textures are in good agreement with the
features of the Dirac cone, which is a topological surface state
protected by time-reversal symmetry and characterized by spin-
momentum locking.

DISCUSSION
DFT methods are now widely used to calculate various properties
of molecules and materials. However, successful implementation
of DFT calculations on large systems remains infrequent due to
the significant computational resources and running time
required. A typical DFT calculation often requires tens to hundreds
of self-consistent iterations to obtain the final Hamiltonian and
wave function, with the diagonalization of the Hamiltonian matrix
performed on a dense k-point grid at each iteration step. This
process takes up most of the running time of DFT calculations and
can not be circumvented. The emergence of deep learning in
recent years has enabled efficient atomic simulations with DFT
accuracy, as evidenced by the widespread use of machine
learning interatomic potentials (MLIPs) that offer quantum
mechanical precision to accelerate long-time molecular dynamics
simulations for large systems. As potential energy is just an
invariant scalar, the implementation of transferable MLIP models is
relatively straightforward. However, due to the rotational equiv-
ariance and parity symmetry of the Hamiltonian matrix, develop-
ing a transferrable model for directly predicting the Hamiltonian
matrix is highly challenging.
In this work, we propose an analytical E(3) equivariant

parameterized Hamiltonian matrix that explicitly takes into
account rotation equivariance and parity symmetry. Furthermore,
we extend it to a parameterized Hamiltonian matrix satisfying
SU(2) and time-reversal equivariance to fit the Hamiltonian matrix
with SOC effects. Based on this parameterized Hamiltonian matrix,
we develop an E(3) equivariant deep neural network called
HamGNN to fit the Hamiltonian matrix of various molecules and
solids. Previously reported models were trained and tested on the
datasets consisting of slightly perturbed molecules or crystals
from the same configuration. To demonstrate the accuracy and
transferability of our parameterized Hamiltonian matrix, we used
the trained HamGNN model to predict the electronic structures of
the molecules, periodic solids, the silicon dislocation defect, Moiré
twisted bilayer MoS2, and BixSey quantum materials. The results of
actual tests demonstrate that our model exhibits a high level of
accuracy in comparison to DFT, while also demonstrating a
significant degree of transferability similar to that of MLIPs. These
performances provide a crucial foundation for the extensive
implementation of electronic structure methods in machine
learning. Since our model can establish a direct mapping from
the structure to the self-consistent Hamiltonian matrix without the
time-consuming self-consistent iterations in DFT, it can be used to

accelerate the electronic structure calculation of large systems and
other costly advanced calculations, such as the electron-phonon
coupling matrix via the automatic differentiation ability of the
neural network.

METHODS
Hamiltonian datasets and DFT calculation details
QM9 structure set and the molecules in Table 1 are available from
http://quantum-machine.org/datasets/, SACADA structure set is
available from https://www.sacada.info/sacada_3D.php, and the
structures of Si allotropes, SiO2 isomers, and BixSey crystals are
downloaded from the Materials Project site49. To prepare the
training set of untwisted bilayer MoS2, a random perturbation of
up to 0.02 Å is applied to each atom, and a slip of up to 2 Å is
performed in a random direction within the XY plane. The layer
spacing of the bilayer MoS2 was randomly shifted by a maximum
of 0.5 angstroms. We performed DFT calculations on the structures
in the above datasets to obtain TB Hamiltonian matrices via
OpenMX17, a software package for nano-scale material simulations
based on norm-conserving pseudopotentials and pseudo-atomic
localized basis functions. The PBE (Perdew-Burke-Ernzerhof)71

functional is employed for all OpenMX calculations presented in
this study. H6.0-s2p1, C6.0-s2p2d1, N6.0-s2p2d1, O6.0-s2p2d1, F6.0-
s2p2d1, Si7.0-s2p2d1, Mo7.0-s3p2d2, Bi8.0-s3p2d2, and Se7.0-
s3p2d2 pseudoatomic orbitals (PAOs) were used as the basis for
the calculations. The truncation radius of the atomic orbits of H, C,
N, O, and F is 6.0 Bohr, the truncation radius of the atomic orbits of
Si, Mo, and Se is 7.0 Bohr, the truncation radius of the atomic
orbits of Bi is 8.0 Bohr. The cutoff energy and K-point grid used by
OpenMX in the calculation of the Hamiltonian matrices for each
dataset are listed in Supplementary Table 6. The Si dislocation
model was built by Atomsk72 and relaxed by GPUMD73 with a
force criterion of 0.1 eV ∙ Å−1. The VASP74,75 results of Moiré
superlattice of bilayer MoS2, which serve to validate the accuracy
of our HamGNN predictions, are referenced from Naik et al.‘s
work61. They utilized LDA and PBE functionals to calculate the
electronic structure of twisted bilayer MoS2 with a Moiré angle of
3.5°. For the OpenMX calculation on the Moiré twisted bilayer
MoS2, we used a cutoff energy of 150 Ry and a 4 × 4 × 1 k-point
mesh to sample the Brillouin zone.

Hamiltonian construction details
The majority of computational time in DFT calculations is
dedicated to self-consistent iterations aimed at obtaining the
self-consistent charge density ρ, which is used to determine the
final Hamiltonian matrix and wave functions. The Kohn-Sham
Hamiltonian can be written as H ¼ T þ Veff , where
Veff ¼

P
l Vecðr� τlÞ þ Vscf ½ρ�. Vecðr� τlÞ is the Coulomb potential

of the core charges of each atom l, Vscf ½ρ� ¼ δEee
δρ þ δExc

δρ denotes the
sum of the potentials that arise from the electron-electron
interaction energy Eee½ρ� and the exchange-correlation energy
Exc½ρ�. The matrix elements of the kinetic energy operator
hϕni limi

ðr� τiÞjT̂ jϕnj ljmj
ðr� τj � Rnc Þi and the Coulomb potential

of the atomic cores hϕni limi
ðr� τiÞj

P
l Vecðr� τlÞjϕnj ljmj

ðr� τj �
Rnc Þi are not functionals of the self-consistent charge density and
can be calculated analytically without SCF iterations. The complete
Hamiltonian can be obtained by the sum of the SCF-independent
matrices calculated analytically from the atomic coordinates and
the SCF-dependent matrix Vscf ½ρ� that can be fitted by the
equivariant neural networks. The general parameterized Hamilto-
nian proposed in this work can be applied to all tight-binding
Hamiltonian matrices calculated using various exchange-
correlation functionals (see Supplementary Discussion 7).
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Network and training details
The Pytorch-1.11.076, PyG-2.0.477, Pymatgen78, Nequip-0.5.333, and
e3nn-0.5.079 libraries are used to implement HamGNN. All models
used in this work have five orbital convolution layers, a pair
interaction layer, an on-site layer, and an off-site layer. The edge
distances between each atom and its neighbors are expanded by
eight Bessel function bases. The spherical harmonic functions with
a maximum degree Lmax= 4 are used to embed the directions of
the edges. The O(3) representations used for the atom features
and pair interaction features have Nfea channels with a maximum
degree Lmax and parities p= ±1. The number of feature channels
Nfea and the maximum degree Lmax for each dataset are listed in
Supplementary Table 7. A two-layer MLP with 64 neurons is used
to map the invariant edge embeddings to the weights of each
tensor product path in Eqs. (19) and (21). Shifted softplus31

function is used as the activation function in the MLP. The gate

activation function scales the input features ð	
i
uð0Þpi Þ 	 ð	

j
vð0Þp0j Þ 	

ð	
j
wðlj>0Þ

pj Þ with its invariant field ð	
i
uð0Þpi Þ and ð	

j
vð0Þp0j Þ as the gate.

The output equivariant features of gate nonlinearity are

½	
i
ϕ1
pi
ðuð0Þpi Þ� 	 ½	

j
ϕ2
p0j ðv

ð0Þ
p0j Þw

ðljÞ
pj �, where ϕ1

pi
and ϕ2

p0j are the

activation functions that vary with the parity of the scalar input,
defined as follows33:

ϕ1
pi
ðxÞ ¼ sspðxÞ ¼ lnð0:5 ´ ex þ 0:5Þ pi ¼ 1

tanhðxÞ ¼ ex�e�x

exþe�x pi ¼ �1

(
(23)

ϕ2
p0 j
ðxÞ ¼ sspðxÞ ¼ lnð0:5 ´ ex þ 0:5Þ p0 j ¼ 1

jxj p0 j ¼ �1

(
(24)

ϕ1
pi
ðxÞ has the same parity as the input scalar x, while ϕ2

p0j ðxÞ
always has even parity. This ensures that the parity of the output
features of the Gate activation function is equivariant.
To increase transferability and avoid overfitting, we include the

error of the calculated energy bands as a regularization term in
the loss function:

L ¼ k~H � Hk þ λ

Norb ´Nk

XNk

k¼1

XNorb

n¼1

k~εnk � εnkk (25)

where the variables marked with a tilde refer to the correspond-
ing predictions and λ denotes the loss weight of the band
energy error. λ equals 0.001 in our training. When the training of
the network has not converged, the error of the predicted
Hamiltonian is large, resulting in poor or even divergent
prediction values of the energy bands. Adding the band loss
value at the beginning of training may cause the total loss value
to diverge. Therefore, we train the network in two steps. First,
only the mean absolute error of Hamiltonian matrices is used as
the loss value to train the network until the network weights
converge. The parameters were optimized with AdamW80,81

optimizer using an initial learning rate of 10−3. Then the mean
absolute error of each band calculated at Nk random points in
the reciprocal space is added to the loss function and starts the
training at an initial learning rate of 10−4. When the accuracy of
the model on the validation set is not improved after successive
Npatience epochs, the learning rate will be reduced by a factor of
0.5. When the accuracy of the model on the validation set is not
improved after successive Nstop epochs or the learning rate is
lower than 10−6, the training will be stopped and the model that
has the best accuracy on the validation set will be used on the
test set. The values of some key network and training
parameters on each dataset are listed in Supplementary Table
7. All models were trained on a single NVIDIA A100 GPU.

DATA AVAILABILITY
The pre-trained models and the test examples are available on Zenodo (https://
doi.org/10.5281/zenodo.8147631). The training datasets are available on Zenodo
(https://doi.org/10.5281/zenodo.8157128).

CODE AVAILABILITY
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