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Abstract 

Using the message-passing mechanism in machine learning (ML) instead of self-consistent 

iterations to directly build the mapping from structures to electronic Hamiltonian matrices will 

greatly improve the efficiency of density functional theory (DFT) calculations. In this work, we 

proposed a general analytic Hamiltonian representation in an E(3) equivariant framework, 

which can fit the ab initio Hamiltonian of molecules and solids by a complete data-driven 

method and are equivariant under rotation, space inversion, and time reversal operations. Our 

model reached state-of-the-art precision in the benchmark test and accurately predicted the 

electronic Hamiltonian matrices and related properties of various periodic and aperiodic 

systems, showing high transferability and generalization ability. This framework provides a 

general transferable model that can be used to accelerate the electronic structure calculations 

on different large systems with the same network weights trained on small structures. 

Introduction 

Nowadays machine learning (ML) has a wide range of applications in molecular and materials 

science, including the direct prediction of various properties of materials1-3, the construction of 
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machine learning force fields (MLFFs) with quantum mechanical precision4-7, the high-

throughput generation of molecular and crystal structures8-10, and the construction of more 

precise exchange-correlation functionals11, 12. However, the acquisition of the electronic 

structure of materials still relies almost exclusively on density functional theory (DFT) based 

calculations. Unfortunately, these methods are very time-consuming to get the Hamiltonian of 

the systems through self-consistent iterations and scale poorly with the system sizes. Semi-

empirical tight-binding (TB) approximations13, such as the Slater-Koster method14, can reduce 

a lot of computation compared to the ab initio DFT methods. However, this approach often 

directly uses the existing or manually fine-tuned TB parameters and thus cannot accurately 

reproduce the electronic structure of general systems. Developing truly transferable, fully data-

driven TB models applicable across materials, geometries, and boundary conditions can 

reconcile accuracy with speed but is rather challenging. 

Hegde and Brown first used kernel ridge regression (KRR) to learn semi-empirical tight-

binding Hamiltonian matrices15. They successfully fitted the Hamiltonian of the Cu system 

containing only rotation invariant s orbitals and the diamond system consisting only of s and p 

orbitals. Similarly, Wang et al. designed a neural network model to obtain semi-empirical TB 

parameters by fitting the ab initio band structure16. An important feature of the Hamiltonian 

matrix is that its components transform equivariantly with the rotation of the coordinate system. 

However, none of these approaches deals with the rotational equivariance of the Hamiltonian 

matrix. Moreover, the two methods can only fit the empirical model Hamiltonian rather than 

the true ab initio tight-binding Hamiltonian matrices generated by the self-consistent iteration 

of ab initio tight-binding methods such as OpenMX17, 18 and Siesta19, 20. 
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Zhang et al.21 and Nigam et al.22 proposed a method to predict the ab-initio TB Hamiltonian 

of small molecules and simple solid systems by constructing an equivariant kernel in Gaussian 

Process Regression (GPR) to parameterize the Hamiltonian. Since GPR uses a fixed kernel and 

representation23-26, its training accuracy and multi-element generalization ability are usually 

lower than those of deep neural networks such as the message passing neural networks 

(MPNNs)27-32 when the number of training samples is sufficient. Therefore, developing graph 

neural networks (GNNs) capable of predicting the Hamiltonian of general periodic and 

aperiodic systems would be the best option. 

However, traditional GNNs can only predict rotation-invariant scalars such as energy, band 

gap, etc. GNNs must encode the directional information of the system in an appropriate way to 

predict equivariant directional properties. To make the predicted Hamiltonian matrices satisfy 

the rotational equivariance, Schütt et al. designed the SchNorb neural network architecture by 

embedding the direction information of the bonds into the message-passing function33. This 

network constructs the ab initio Hamiltonian of molecules from the directional edge features of 

atom pairs. However, SchNorb needs to learn the rotational equivariance of the Hamiltonian 

matrix through data augmentation, which greatly increases the amounts of training data and 

redundant parameters of the network. Unke et al. proposed the PhisNet model34, which realized 

the SE(3) equivariant parameterization of the Hamiltonian matrices with GNN based on SO(3) 

representations and achieved state-of-the-art accuracy on the Hamiltonian of small molecules 

such as water and ethanol. However, it should be noted that the PhisNet model is not the most 

universal representation of the Hamiltonian as it ignores the parity of the Hamiltonian, which 

may lead to serious problems when predicting periodical systems with infinite sizes. 
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Recently, Li et al. proposed a GNN model called DeepH to predict the ab initio Hamiltonian 

by constructing a local coordinate system in a crystal35. DeepH successfully predicted the tight-

binding Hamiltonian of some simple periodic systems such as graphene, carbon nanotubes, etc. 

Their original intention of introducing the local coordinate system is to solve the rotation 

equivariance problem of the Hamiltonian, but DeepH still embeds the local directional 

information of interacting atom pairs in the invariant message passing function, which will 

undoubtedly increase the number of redundant parameters of the network but may require less 

data augmentation than a fully invariant model without local coordinate systems. In addition, 

the hopping distance between two interacting atoms far exceeds the lengths of the general 

chemical bonds. Taking the smallest hydrogen atom as an example, the cutoff radius of the 

numerical atomic orbital of the hydrogen atom used by OpenMX is 6 Bohr, so the furthest 

hopping between any two atomic bases used by OpenMX in periodic systems can exceed at 

least 12 Bohr (~6.4 Å), a distance that even exceeds the lattice parameters of some crystals. 

Therefore, it is difficult to describe such long hopping in a well-defined local coordinate system. 

Because of the spherical harmonic part of the atomic basis functions, the TB Hamiltonian 

matrix must satisfy two fundamental constraints: rotational equivariance and parity symmetry. 

When the spin-orbit coupling (SOC) effects or the ionic magnetic moments are taken into 

account, rotational equivariance in the spin degrees of freedom and additional time-reversal 

equivariance need to be fulfilled. It is hard for the models to learn the physically correct 

dependence on the direction of input structures from the data. 

In this work, we constructed a general parametrized Hamiltonian by decomposing each block 

of the Hamiltonian into a vector coupling of equivariant irreducible spherical tensors36 (ISTs) 



5 
 

with correct parity symmetry. This parametrized Hamiltonian strictly satisfies the rotational 

equivariance and parity symmetry and can be extended to a parameterized Hamiltonian 

satisfying SU(2) and time-reversal equivariance to fit the Hamiltonian with SOC effects or ionic 

magnetic moments. Based on this universal parametrized Hamiltonian, we designed the E(3) 

equivariant HamGNN model for predicting the ab initio TB Hamiltonian of molecules and 

solids. HamGNN has reached state-of-the-art accuracy on the benchmark test and shows high 

efficiency and transferability in the prediction of various periodic and aperiodic systems. The 

trained HamGNN model can predict the Hamiltonian matrices, energy bands, and 

wavefunctions of the structures not present in the training set. The high transferability and 

precision of our model enable this ML electronic structure method to replicate the success of 

MLFFs and be widely used in practical electronic structure calculations. 

Results 

E(3) equivariant parametrized Hamiltonian 

The core of the electronic structure problem in DFT is to solve the Kohn-Sham equation for 

electrons in reciprocal space. If the Kohn-Sham Hamiltonian is represented by numerical 

atomic orbitals centered on each atom (such as those defined in the OpenMX and Siesta 

packages), then the Kohn-Sham equation can be expressed as a generalized eigenvalue problem 

as follows: 

   k k

nk nk nk
  Η S
 

   ,                           (1) 
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Sham Hamiltonian and overlap matrices at the point 𝑘ሬ⃗   in the reciprocal space. 
 

,i i i j j j

k

n l m n l mH


 

and 
 

,i i i j j j

k

n l m n l mS


  are obtained by Fourier transform of real-space TB Hamiltonian matrix 

     ,
ˆnc

i i i j j j i i i j j j c

R

n l m n l m n l m i n l m j nr H r R      H
    

  and overlap matrix 

     ,
nc

i i i j j j i i i j j j c

R

n l m n l m n l m i n l m j nr r R      S
    

  in the basis of atomic orbitals 
i i in l m   at the 

site i


 and 
j j jn l m  at the site 

cj nR 


, where 
cnR


 is the shift vector of periodic image cell. 

Therefore, once we have obtained the Hamiltonian matrix and overlap matrix in real space, we 

can further solve the electronic structure in the whole reciprocal space. 

Due to the spherical symmetry of the atomic potential, the atomic orbital bases as its 

eigenfunctions not only satisfy the rotational equivariance under the operation  3Q SO  but 

also has a certain parity symmetry under the inversion operation  ,g E I . Under a rotatory 

inversion operation  3gQ O , the TB Hamiltonian matrix element ,i i i j j jn l m n l mH  in real space 

becomes (we omit the notation 𝑅ሬ⃗ ௡೎  for convenience in the following discussion): 

,
ˆ

i i i j j j i i i j j jn l m n l m n l m n l mgQ H gQ  H .                    (2) 

The irreducible representation of gQ is    p g D Q  , where  D Q  is the Wigner D matrix 

and  p g  is the scalar irreducible representation of the inversion operation, which is defined 

as follows 

 
1,

,p

g E
g

p g I



  

.                         (3) 

Substitute the irreducible representation of gQ into Eq. (2), we can get 

         , ,
ji

i i i j j j i j i i j j i i i j j j

i j

ll
n l m n l m p p m m n l n lg D Q D Q   

 

  H H ,       (4) 
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where      =
i j i jp p p pg g g   . We further write the right-hand side of Eq. (4) in the form of 

matrix-vector multiplication: 

     , ,
,

ji

i i i j j j i j i i i j j j
i j i j

i j

ll
n l m n l m p p n l n l

m m
g D Q D Q    

     H H .        (5) 

It can be seen from the above equation that each sub-block  , ,
i i i j j jn l n l i i j jl l    H  of the 

TB Hamiltonian based on atomic orbitals can be regarded as a spherical tensor36,37 

,

, ,
i i j j

i j i i i j j j

n l n l

p p n l n l  HμT  with the parity 𝑝௜𝑝௝, which is rotationally equivariant according to the 

generalized Wigner D matrix      ji

i i j j

ll
m mQ D Q D Q l

μmD , where  ,i jl ll ,  ,i j μ , 

 ,i jm mm . 

According to the angular momentum theory37,38,    ji
llD Q D Q   is a reducible 

representation, which can be further decomposed into the direct sum of several irreducible 

Wigner D matrices: 

1i j i jj i ji
l l l ll l llD D D D D
        .                (6) 

Combining the parity of the Hamiltonian matrix block  ,i i j jn l n l , we can get 

         
i j

ji

i j i j

i j

l l
ll L

p p p p
L l l

g D Q D Q g D Q 


 

   .            (7) 

According to Eq. (7), 
,

,
i i j j

i j

n l n l

p pμT   is reducible and the coupled irreducible spherical tensor 

,

, ,
i i j j

i j

n l n l

L p p mT  in each order , ,i j i jL l l l l    can be obtained by the vector coupling of 
,

,
i i j j

i j

n l n l

p pμT : 

, ,

, , ,

ji
i i j j i j i i j j

i j i j i j

i i j j
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n l n l Ll l n l n l
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l l

T C  
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   μT ,                      (8) 

where i j

i j

Ll l

mC    is the vector coupling coefficient, namely the Clebsch-Gordan coefficient. Each 
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IST ,
, ,
i i j j

i j

n l n l
L p p mT   has the parity symmetry of 𝑝௜𝑝௝  and satisfies the rotational equivariance of 

order L. By inverse linear transformation of Eq. (8), 
,

,
i i j j

i j

n l n l

p pμT  can be constructed from ISTs 

,

, ,
i i j j

i j

n l n l

L p p mT : 

, ,

, , ,
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i i j j i j i i j j

i j i j i j
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
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Therefore, as long as we find all ISTs corresponding to each block of the Hamiltonian matrix, 

we can construct the entire Hamiltonian matrix in a block-wise manner through Eq. (9). We 

construct two O(3) equivariant vectors on
iΩ  and off

ijΩ  by direct summation of all the ISTs 

required by the on-site (𝑖 ൌ 𝑗) Hamiltonian and the off-site (𝑖 ് 𝑗) Hamiltonian respectively: 

,
, ,

i i

i i i i
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    Ω ,                 (10) 

,
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    Ω .                 (11) 

The prediction of the Hamiltonian is transformed into the prediction of on
iΩ  and off

ijΩ , which 

can be obtained by mapping from the equivariant features of the nodes and the pair interactions, 

respectively. The final parameterized Hamiltonian can be expressed as: 

3
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 
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 

 




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 


.     (12) 

The above formula is O(3) equivariant. Since GNN naturally has translational symmetry, the 

parameterized Hamiltonian represented by on
iΩ   and off

ijΩ   obtained from GNN has E(3) 

equivariance. 
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When the spin-orbit coupling (SOC) effects are considered, the real-space Hamiltonian 

matrices are complex-valued and can be divided into four sub-blocks ˆ
i js sH ( ,i js s or  ) by 

the spin degree. In this case, the complete Hamiltonian matrices satisfy the following SU(2) 

rotational equivariance: 

             1 2 1 2

1 2 1 2

ˆ
ji

ji

i i i j j j i j i i j j

i i j j i j

ll
ll

n l m i n l m j p p m m
l l s s

gQ s gQ s g D Q D Q 
 

  
    

    H  

        1 2 1 2 ˆ
i i j j i i i j j js s s s n l i n l jD Q D Q s s     * H .                  (13) 

Although each subblock ˆ
i js sH  satisfies the O(3) rotational equivariance, they are coupled 

to each other under the rotational operations. Therefore, the four subblocks predicted 

independently with the O(3) equivariant parameterized Hamiltonian cannot be used to construct 

the complete SU(2) equivariant Hamiltonian with the SOC effect. In addition, the real and 

imaginary parts of the SU(2) equivariant Hamiltonian matrices are also coupled during rotation, 

so the complete Hamiltonian cannot be constructed by using the independently predicted real 

and imaginary parts. These methods not only rely on a large number of fitting parameters but 

also can not make the constructed Hamiltonian matrices strictly meet the SU(2) equivariance. 

To ensure that the SOC effect learned by the network complies with the physical rules and SU(2) 

equivariance, we explicitly express the complete Hamiltonian as the sum of the spin-less part 

and the SOC part: 

2
ˆ ˆ ˆ

SOCH I H  Η ,                         (14) 

where     1 1ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ
2 2SOC x x y y z zH r L r L L L         

 
 , which satisfies SU(2) rotational 

equivariance and time-reversal equivariance.  r  is an invariant coefficient describing the 
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strength of the SOC effects39. According to the above equation, we can get the following 

parameterized Hamiltonian matrices with SOC effect in the atomic orbitals39, 40: 

 
, ,

,

,

,

1 ˆ ,
2

1 ˆ ˆ ,
2
1 ˆ ˆ
2

i i i j j j i i j j i i i j j j

i i j j i i i j j j i i i j j j

i i i i j j j j

i i j j i i i j j j i i i

n l m n l m n l n l n l m z n l m i j

n l n l n l m x n l m n l m y n l m i j
SOC
n l m s n l m s

n l n l n l m x n l m n l m

H L s s

L i L s s

L i

  

    

   

  

  
 



                     

      





 
, ,

,

1 ˆ ,
2

j j j

i i i j j j i i j j i i i j j j

y n l m i j

n l m n l m n l n l n l m z n l m i j

L s s

H L s s



  







  


   


       

                      

.  (15) 

Since the matrix representation of the angular momentum operator 

   ˆ ˆ
i i i j j j i i i j j jn l m n l m n l m i n l m j jiL r L r     =

  
 under the atomic orbital basis can be directly 

calculated analytically, the only learnable parameters in Eq. (15) are ,i i i j j jn l m n l mH  and ,i i j jn l n l . 

,i i i j j jn l m n l mH  can be directly expressed by Eq. (12), and ,i i j jn l n l  is an invariant scalar coefficient 

that can be mapped from the features of atom pairs ij. 

We can further derive the parameterized Hamiltonian satisfying the time-reversal 

equivariance for the magnetic systems. The classical Heisenberg model can be written in a 

general matrix form containing all possible second-order interactions41: 

         
,

spin i j i j k k k
i j k

E J M M A M M     

 

         
  

      ,         (16) 

where the 3×3 tensors i jJ 
   and kA

  are called the J matrix and single-ion anisotropy (SIA) 

matrix, respectively.  iM     is the component of the ionic magnetic moment 

  ˆˆ
i iM Tr W   

   
 

, which is a functional of the electron density ρ. The magnetization of the 

system is partitioned into the local magnetic moments on each atom by a pre-defined weight 

operator ˆ
iW  , which is commonly defined as  ˆ  i cut iW dr f r r r r   

    
, where f is a 

radial cutoff function centered on atom i . The matrix element of the weight operator ˆ
iW   is 
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given by42, 43 

 
,

,
,

,       ,

1ˆ ,      
2
   0,                  ,   

i i i j j j

i i i j j j
i i i j j j

n l m n l m

i n l m n l m
n l m n l m

w i j i

W w i or j i

i j i





  




                     (17) 

The matrix ,i i i j j jn l m n l mw  varies with the choice of the cutoff function f and can be parameterized 

by Eq. (12). The magnetic part of the parameterized Hamiltonian for the magnetic systems 

equals the variational derivative spinE


: 

    , , ,,,
,

i i i i j j j j i j i ji i i j j ji i i j j j

mag
n l m s n l m s i j i j s s j i s sn l m n l mn l m n l m

i j

H J M W M W  
 



      
 

    

   , ,, i j i ji i i j j j
k k k s s k s sn l m n l m

k

A W M M  
 



    


 .      (18) 

The i jJ 
   and kA

  tensors are learnable and can be mapped from the features of the edges 

and nodes respectively. Since the spin magnetic moment is odd under time-reversal operation 

and even under spatial inversion operation, the tensors i jJ 
   and kA

  should be even under 

time-reversal and spatial inversion operations so that the parameterized Hamiltonian matrix 

constructed by Eq. (18) satisfies the time-reversal equivariance and the parity symmetry. In 

addition, Eq. (18) still satisfies all the equivariance when only the ionic magnetic moments are 

rotated. 

Network Implementation 

As can be seen from the above discussion, each Hamiltonian matrix block satisfies the rotational 

equivariance and has a definite parity under the inversion operation, so we designed E(3) 

equivariant HamGNN deep neural network based on MPNN to fit ab initio TB Hamiltonian. 

This framework directly captures the electronic structure without expensive self-consistent 
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iterations by constructing local equivariant representations of each atomic orbit. The network 

architecture of HamGNN is shown in Fig. 1(a). HamGNN can achieve a direct mapping from 

atomic species  iZ  and positions  ir


 to ab initio TB Hamiltonian matrix.  

HamGNN first encodes elements, inter-atomic distances, and relative directions as initial 

graph embeddings. The distance between atom i and its neighboring atom j within the cutoff 

radius rc is expanded using the Bessel basis function: 

     
sin2 ij c

ij c ij
c ij

n r r
B r f r

r r





 

 ,                 (19) 

where cf  is the cosine cutoff function, which guarantees physical continuity for the neighbor 

atoms close to the cutoff sphere. The directional information between atom i and atom j is 

embedded in a set of real spherical harmonics   ˆf

f

l

m ijY r


 , which is used to construct the 

rotation-equivariant filter44 in the equivariant message passing. 

The atomic feature 
0 0 1 1 max maxl p l p l pV V V   V  in HamGNN is represented by a direct 

sum of different O(3) representations up to maxl  order, and each order feature can characterize 

the atomic orbit with different angular quantum numbers. Such features are transformed by the 

direct sum of the Wigner D matrix, i.e. by the block diagonal matrix 
0 1 max

D D D   l l lD . 

,
, , ,i i i i

i t
l p c mV  denotes the equivariant features of atom i in the orbital convolution layer t, where 

maxil l  is the order of the O(3) irreducible representation,  1, 1ip    denotes the parity of 

the equivariant components of the order il , i i il m l    is the index of each projection of the 

equivariant representation, ic   is the channel index. We use T orbital convolution layers to 

construct the equivariant features of the atomic orbits in the local environment. Each orbital 

convolution layer performs a tensor product of the equivariant features of the neighbor atomic 

orbits and the spherical harmonic embeddings of the edge directions via Eq. (20), and the  
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Fig. 1. HamGNN architecture and the illustration of its subnetworks. (a) The overall 

architecture of HamGNN. This neural network architecture predicts the Hamiltonian matrix 

through 5 steps. The prediction starts from the initial graph embedding of the species, 

interatomic distances, and interatomic directions of molecules and crystals. The atomic orbital 

features with angular momentum l in the local environment are included in the l-order 

components of the E(3) equivariant atom features and are refined through T orbital convolution 

blocks. In the third step, pair interaction features , , ,
ij
l p c m  of atomic orbitals are constructed by 

pair interaction blocks. In the fourth step, the IST representations of on-site and off-site 

Hamiltonian matrices are constructed by passing the features of atomic orbitals and pair 

interactions through the on-site layer and off-site layer, respectively. The final step is to 

construct the on-site and off-site Hamiltonian matrices block-by-block via the parameterized 

Hamiltonian given by Eq. (12). (b) Orbital convolution block. The equivariant atomic features 

that include the features of atomic orbitals of each angular momentum l are refined by the 

equivariant message passing and update functions. (c) Pair interaction block. This block is used 

to construct the pair interaction features between the orbitals of two adjacent atoms by 

equivariant tensor product. (d) On-site layer. The equivariant features of atoms are transformed 
into ISTs of on-site blocks on

iΩ  by the on-site layer. (e) Off-site layer. The pair interaction 

features between atomic orbitals are transformed into ISTs of the off-site block off
ijΩ by the off-

site layer. (f) Residual block. The residual block is used in the on-site layer and off-site layer 

to perform a nonlinear equivariant transformation of input features. 
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invariant scalar features of the interatomic distances are used to scale the equivariant output of 

each angular momentum. The message ,
, , ,i i i i

ij t
l p c mm   output by Eq. (20) is composed of 

contributions with parity i j fp p p  to satisfy parity symmetry. Eq. (21) is the update function 

of orbital equivariant features. The updated orbital equivariant features are passed to a nonlinear 

gate activation function45, which scales the input features equivariantly with the invariant field 

( 0l  ) of the input features as the gate. 

   , ,, ,, , 1
, , , , , , , ,

, , ,

ˆ
f j

i i i
i f i f

i i i i i f i f j j i j
f f j j

f f j j

l l
l p cl l l lij t j t

l p c m m m m ij m ij l p c m
l p l p

m l m l

m C MLP B r Y r V 

 

     
       (20) 

 

, , 1 ,
, , , , , , , , ,i i i i i i i i i i i i

i t i t ij t
l p c m l p c m l p c m

j N i

V V m



                         (21) 

The pair interaction layer adjusts the pair interaction features (used to construct off-site 

Hamiltonian) based on the features of the atomic orbits of two interacting atoms as well as the 

direction and strength of their interactions by the following equation: 

  , ,, , , ,
, , , , , , , , , , , , , , , , ,

, , ,

ji
i j

i j i i i i i j j j j j
i i j j

i i j j

ll l p cl l lij i i T j j T
l p c m m m m ij l p c c l p c m l p c c l p c m

l p l p
m l m l c c

C MLP B r W V W V    
  

          
     

   , ,, ,

, , , , ,
, , ,

ˆ
f

f f

f f
f f

f f

l l l p cl l l l ij
m m m ij m ij l p c m

l p l p
m l m l

C MLP B r Y r V



    

  

     
,            (22) 

where , ,
, , , , , , , , , , , , , , ,

ij i i T j j T
l p c m l p c c l p c m l p c c l p c m

c c

V W V W V                
 

     is the mixed feature vector of 

,
, , ,i i i i

i T
l p c mV   and ,

, , ,j j j j

j T
l p c mV  . The on-site layer and off-site layer are used to convert the node 

features ,
, , ,i i i i

i T
l p c mV  and pair interaction features , , ,

ij
l p c m  into the direct sums on

iΩ  and off
ijΩ  

of the ISTs required to construct on-site and off-site Hamiltonian blocks, respectively. We add 

shortcut connections in the on-site layer and off-site layer and also use a norm activation 

function that scales the modulus of the irreducible representations of each order nonlinearly to 

increase the nonlinear fitting ability of the network. In the last step, the network uses the ISTs 

in on
iΩ  and off

ijΩ  to construct the on-site and off-site Hamiltonian blocks through Eq. (12). 
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The predicted Hermitian Hamiltonian is obtained by the following symmetrization: 

 
 

*
, , ,

, *
, , ,

2

2

i i i i i i i i i i i i i i i i i i

i i i j j j

i i i j j j i i i j j j j j j i i i

on on on
n l m n l m n l m n l m n l m n l m

n l m n l m off off off
n l m n l m n l m n l m n l m n l m

H H H i j
H

H H H i j

        
    

  

              

           

 

 
     (23) 

Tests and applications 

To assess the precision and transferability of HamGNN, we trained and tested HamGNN on the 

ab initio Hamiltonian matrices and electronic structures for the periodic and aperiodic systems 

including various molecules, periodical solids, a nanoscale dislocation defect, and a Moiré 

superlattice. Previously reported models such as SchNorb33, PhiSNet34, and DeepH46 are trained 

and tested on only one configuration each time, and predicting the Hamiltonian matrix of a 

different configuration requires additional training on the perturbed structures of that 

configuration. Since HamGNN is based on the universal parameterized Hamiltonian proposed 

in this work, our model can be trained and tested on structures with the same atomic species 

but different configurations in the same way as ML force field models. 

Molecules 

The QM9 dataset47,48 contains 134k stable small organic molecules made up of CHONF. These 

small organic molecules are important candidates for drug discovery. The development of 

general ML models for rapid screening of the electronic structure properties of drug molecules 

is beneficial for understanding the mechanisms of drugs and shortening the cycle of drug 

development. We calculated the real-space ab initio TB Hamiltonian matrices using OpenMX 

for 10,000 randomly selected molecules from the QM9 dataset. We divided the whole dataset 

into the training, validation, and test set with a ratio of 0.8: 0.1: 0.1. As shown in Fig. 2(a), the 

prediction values coincide quite well with the DFT calculated values of the Hamiltonian matrices 
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Fig. 2. Application of HamGNN on molecules in the QM9 dataset. (a) Comparison of the 

HamGNN predicted Hamiltonian matrix elements with the OpenMX calculated Hamiltonian 

matrix elements on the QM9 test set. (b) Comparison of predicted and calculated energy levels 

for 4 molecules randomly selected from the QM9 test set. 

 

for the different configurations outside the training set. The mean absolute error (MAE) of the 

Hamiltonian matrix element predicted by the trained HamGNN model on the test set is only 

1.49 meV. Each of the energy levels calculated by the predicted Hamiltonian coincides almost 

exactly with the DFT-calculated energy levels (see Fig. 2(b)), showing high precision and 

transferability. 

We also trained HamGNN on the Hamiltonian of several specific small molecules generated 

by ab initio molecular dynamics (MD) and compared the accuracy of HamGNN with two 

recently reported models, PhiSNet34 and DeepH46, in predicting the Hamiltonian of these small 

molecules. The Hamiltonian matrices of these molecules were calculated by OpenMX and 

divided into the training, validation, and test sets in the same way as PhiSNet in ref.34. As can 

be seen from Table S1, HamGNN achieves the highest accuracy among the models. The 

accuracy of DeepH is lower than that of PhiSNet and HamGNN because the local coordinate 

system used by DeepH is not strictly equivariant. Although SE(3) equivariant PhiSNet shows 
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high accuracy in predicting the molecules, it is not a universal equivariant model because it 

does not satisfy the parity symmetry of the Hamiltonian matrix strictly. Failure will occur in 

fitting the periodic solid materials containing much more hopping terms or edges (see Appendix 

A). 

Periodic solids 

We collected 426 carbon allotropes from Samara Carbon Allotrope Database (SACADA)49, 30 

silicon allotropes, and 187 SiO2 isomers from the Materials Project50. Each of these structures 

contains no more than 60 atoms in its unit cell. We performed DFT calculations using OpenMX 

to obtain the ab initio Hamiltonian matrices for these structures and divided the Hamiltonian 

matrices in each dataset into training, validation, and test sets with a ratio of 0.8: 0.1: 0.1. The 

MAEs of the Hamiltonian predicted by HamGNN for the structures in the test set of carbon 

allotropes, silicon allotropes, and SiO2 isomers are 1.84 meV, 2.60 meV, and 3.75 meV, 

respectively. The MAE of HamGNN on the carbon allotropes is even lower than the error (2.0 

meV) of DeepH on the training dataset of only the graphene structures46. Most importantly, our 

HamGNN model trained on the SACADA dataset is transferable and can fit the Hamiltonian of 

carbon allotropes of arbitrary sizes and configurations outside the training set. 

We used pentadiamond51, Si (MP-1204046), and SiO2 (MP-667371) to test the accuracy and 

transferability of the HamGNN models trained on the three datasets. The test structures are 

shown in Fig. 3(a-c). Pentadiamond is a three-dimensional carbon foam constructed from 

carbon pentagons and contains 88 carbon atoms in the unit cell51. The Si structure labeled MP-

1204046 contains 106 atoms in the unit cell and belongs to the tetragonal system. The SiO2 

structure labeled MP-667371 is characterized by the complex porous structures built by SiO4  
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Fig. 3. The prediction of HamGNN on several periodic solids that are not present in the 

training sets. (a−c) Crystal structures of pentadiamond, Si (MP-1204046), and SiO2 (MP-

667371). (d−f) Comparison of the HamGNN predicted Hamiltonian matrix elements and the 

DFT calculated Hamiltonian matrix elements of pentadiamond, Si (MP-1204046), and SiO2 

(MP-667371). (g−i) Comparison of HamGNN predicted energy bands (solid line) and DFT 

calculated energy bands (dashed line) of pentadiamond, Si (MP-1204046), and SiO2 (MP-

667371). 

 

tetrahedra and has 168 atoms in the unit cell. The MAE of the Hamiltonian matrix elements 

predicted by HamGNN on the pentadiamond, Si (MP-1204046), and SiO2 (MP-667371) is only 

2.28 meV, 1.75 meV, and 3.32 meV respectively. The high prediction accuracy can be seen in 

the scatter plots of the predicted Hamiltonian matrices versus the DFT calculated Hamiltonian 

matrices shown in Fig. 3(d-f). Using the predicted Hamiltonian, we can obtain the energy bands 

that almost exactly coincide with those of the DFT calculations, as shown in Fig. 3(g-i). The 

Hamiltonian matrices and energy bands of twisted bilayer graphene (TBG), Si (MP-1199894), 
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and SiO2 (MP-1200292) are also predicted with similar tiny errors. Details can be seen in 

Appendix B. 

Dislocation defect 

The electronic structure of various point defects in semiconductors can be calculated easily by 

DFT methods52, 53. However, the simulation of isolated dislocations requires the use of large 

supercells to avoid the interactions from the neighbor dislocations, resulting in the high 

computational cost for traditional DFT to simulate the dislocations accurately. Using the ML 

model trained in this work to directly fit the ab initio Hamiltonian of a large system can 

reconcile the computational efficiency with accuracy. In this work, we take an isolated perfect 

edge dislocation in silicon as an example to demonstrate the application of the HamGNN model 

to simulate nanoscale defects in large systems. Crystalline silicon has a diamond-type crystal 

structure, whose most favorable slip system belongs to the type ½⟨110⟩{111}. Taking the {111} 

plane of silicon as the slip plane, we constructed an isolated edge dislocation with Burgers 

vector 1/2<110>, as shown in Fig. 4(a). There are 2,428 atoms in this supercell with an isolated 

edge dislocation. We used the HamGNN model trained on the allotropes of Si to predict the 

Hamiltonian of this dislocation model and calculated its band structure and the Bloch 

wavefunction of valence band maximum (VBM) with the predicted Hamiltonian. It can be seen 

from Fig. 4(b) that an extra occupied energy level appears in the band gap, which greatly 

narrows the band gap of bulk Si and makes the dislocation to be a one-dimensional metallic 

chain. The VBM wave function shown in Fig. 4(a) is mainly distributed in the dislocation core, 

indicating that this occupied level is caused by the hanging bonds and structural distortion in 

the core. The predicted electronic structure in the dislocation core is similar to that of the DFT  
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Fig. 4. The electronic structure prediction on silicon dislocation. (a) The atomic structure 

and defect state of an isolated dislocation in silicon. The atoms on the dislocation plane is 

colored red. (b) The energy bands of the dislocation model along G to Z(0.0, 0.0, 0.5). 

 

simulation for a non-periodical dislocation model containing only 358 atoms54. However, the 

dangling bonds at the edges of the non-periodical supercell are saturated by hydrogens54, which 

may introduce unrealistic states. Since HamGNN can build a shortcut from structure to ab initio 

Hamiltonian matrix, the electronic structure of large supercells can be calculated directly 

without redundant SCF iterations. HamGNN spent only 467 seconds on a single CPU 

calculating the Hamiltonian of the supercell containing 2,428 atoms, showing fantastic speed 

and efficiency. 

Moiré superlattice of bilayer MoS2 

MoS2 is a 2D transition metal dichalcogenide (TMD) that has attracted much attention because 

it is an excellent semiconductor with a wide range of applications in the field of electronics and 

optoelectronics55-58. Different from monolayer or untwisted bilayer MoS2, the twisted bilayer 

MoS2 with Moiré angles has been found to have flat bands and shear solitons55, 59-61, which 

could lead to some novel physical phenomena, such as superconducting states, quantum Hall 

insulators, Mott-insulating phases. HamGNN was trained on the dataset of the untwisted bilayer  
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Fig. 5. The electronic structure prediction on the twisted bilayer MoS2 with a Moiré angle 

of 3.5°. (a) The band structure of the twisted bilayer MoS2. (b) The spatial distribution of VBM 

wave function. 

 

MoS2 structures containing only 54 atoms and then used to predict the electronic structure of 

twisted bilayer MoS2 superlattice with a Moiré angle. We used OpenMX to calculate the 

Hamiltonian matrices of 500 MoS2 bilayer structures with a layer slip distance up to 2Å along 

random directions, and divided the dataset into training, validation, and test sets with a ratio of 

0.8: 0.1: 0.1. The MAE of the trained HamGNN on the test set is only 0.52 meV. Fig. 5 shows 

the calculation results of HamGNN for the electronic structure of the twisted bilayer MoS2 

containing 1,626 atoms with a Moiré angle of 3.5°. As shown in Fig. 5(a), the emergence of flat 

bands at the valence band edge and the Dirac cone at the K point agrees well with the DFT 

calculations in ref.59. Fig. 5(b) shows that the spatial distribution of the predicted VBM wave 

function is highly localized around the Moiré patterns, which is consistent with the DFT 

calculations59. The traditional DFT methods need to perform a lot of SCF iterations and 

diagonalization processes to obtain the self-consistent charge density and Hamiltonian matrix, 

so it takes a lot of time to calculate the large twisted bilayer superlattices. HamGNN can map 

the structure directly to the ab initio Hamiltonian matrix, and obtain all the information of the 
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electronic structure through only one diagonalization process, which can greatly improve the 

computational efficiency. The HamGNN model provides an easy way to systematically study 

the electronic structure of twisted bilayer superlattices with various angles after training on 

small untwisted bilayer structures. 

BixSey quantum materials 

Bi and Se have multiple chemical valences and can form a set of binary compounds BixSey with 

various stoichiometric ratios62, 63. Bi is a heavy element whose d electrons have strong SOC 

effects. A total of 19 BixSey compounds can be found on Materials Project50. The compound 

Bi8Se7 (id: MP-680214) shown in Fig 6A, which contains 45 atoms in the unit cell, was used to 

test the transferability and accuracy of HamGNN. The remaining 18 BixSey compounds, which 

contain no more than 40 atoms in the unit cell, were used to generate the training set for the 

network. To increase the size of the training set, we applied a random perturbation up to 0.02 

Å to the atoms of each BixSey structure to generate 50 new perturbed structures and obtained 

900 structures in total. These structures were randomly divided into the training, validation, and 

test sets with a ratio of 0.8: 0.1: 0.1. The MAE of the real part of the SOC Hamiltonian predicted 

by the trained model for Bi8Se7 is 1.29 meV, and the MAE of the imaginary part of the SOC 

Hamiltonian is only 5.0×10-7 meV. As shown in Fig. 6(b), the predicted and calculated energy 

bands of Bi8Se7 is very close. Since the SOC effect is mainly reflected in the imaginary part of 

the Hamiltonian, such a low MAE for the imaginary part indicates that our proposed 

parameterized SOC Hamiltonian can describe the SOC effect of different systems very 

accurately. The training set contains only 18 perturbed structures of BixSey compounds and no 

compounds with the stoichiometric ratio of Bi8Se7 are present, but the HamGNN model still 
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Fig. 6. The electronic structure prediction on the BixSey quantum materials. (a) The crystal 

structure of Bi8Se7. (b) Comparison of HamGNN predicted energy bands (solid line) and DFT 

calculated energy bands (dashed line) of Bi8Se7. (c) Schematic diagram of the layered crystal 

structure of Bi2Se3. (d) Comparison of HamGNN prediction and DFT calculations of the energy 

gap at G point. (e) Comparison of HamGNN predicted energy bands (solid line) and DFT 

calculated energy bands (dashed line) of Bi2Se3 with 6 QLs. (f) The predicted spin textures on 

the lowest unoccupied state of 0.07 eV and 0.23 eV above the conduction band minimum 

(CBM). 

 

accurately predicted the SOC Hamiltonian and the energy band of this structure, showing very 

high transferability. 

Bi2Se3 is a well-known 3D topological insulator material and is a good platform to study the 

quantum effects related to SOC effects64-68. The bulk Bi2Se3 is an insulator, while a metallic 

state protected by the time-reversal symmetry is formed on the surface. Bulk Bi2Se3 is stacked 

by quintuple layers (QLs) through the van der Waals (vdW) interaction, as is shown in Fig. 6(c). 

Each QL layer is composed of five atomic layers of Se-Bi-Se-Bi-Se combined by strong 

covalent bonds. The HamGNN predicted and DFT calculated G-point band gaps of the Bi2Se3 
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Slab model with 1 to 7 QLs are very close, as shown in Fig. 6(d). It can be seen from Fig. 6(e) 

that the slab model with a single QL has the largest G-point band gap. When a new QL layer is 

added to the slab, the G-point band gap decreases rapidly under the influence of van der Waals 

interactions. As the number of QL layers increases, Eg(G) gradually decreases, and the band 

dispersion at the G point gradually tends to be linear to form a Dirac cone. As shown in Fig. 

6(e), A Dirac cone with a small gap appears near the Fermi surface at the G point. The spin 

textures on the lowest unoccupied state with 0.07 eV and 0.23 eV above conduction band 

minimum (CBM) were calculated using the HamGNN predicted Hamiltonian matrix, as is 

shown in Fig. 6(f). The predicted spin textures are in good agreement with the fact that the 

Dirac cone is a topological surface state protected by time-reversal symmetry and that spin and 

momentum on the topological surface state are bound. 

Discussion 

DFT methods are now widely used to calculate various properties of molecules and materials. 

However, successful DFT calculations on large systems are still rare because of the prohibitive 

computational resources and running time required. A typical DFT calculation often requires 

tens to hundreds of self-consistent iterations to obtain the final Hamiltonian and wave function, 

and the diagonalization of the Hamiltonian on a dense k-point grid is carried out in each 

iteration step. This process takes up most of the running time of DFT calculation and can not 

be skipped. In recent years, the emergence of deep learning enables efficient atomic simulations 

with DFT accuracy. Machine learning force fields (MLFFs) with quantum mechanical precision 

are now widely used to accelerate long-time molecular dynamics simulations of large systems. 

Since potential energy is just an invariant scalar, the implementation of universal MLFF models 
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is relatively easy. While the Hamiltonian is a matrix with rotational equivariance and parity 

symmetry, the implementation of a transferrable model for directly predicting the Hamiltonian 

is very difficult.  

In this work, an analytical E(3) equivariant parameterized Hamiltonian that explicitly takes 

into account rotation equivariance and parity symmetry is proposed and further extended to a 

parameterized Hamiltonian satisfying SU(2) and time-reversal equivariance to fit the 

Hamiltonian with SOC effects or ionic magnetic moments. Based on this parameterized 

Hamiltonian, we develop an E(3) equivariant deep neural network called HamGNN to fit the 

Hamiltonian of arbitrary molecules and solids. Previously reported models were trained and 

tested on the datasets of the molecular dynamics perturbed molecules and solids with just the 

same configuration. To demonstrate the accuracy and transferability of this parameterized 

Hamiltonian, we used the trained HamGNN model to predict the electronic structures of the 

molecules, periodic solids, the silicon dislocation defect, Moire bilayer MoS2, and BixSey 

quantum materials. Actual tests show that our model has a high accuracy compared with DFT 

and a high transferability similar to the machine learning force field. These features are the 

important foundation for the wide application of machine learning electronic structure methods. 

Since our model can establish a direct mapping from the structure to the self-consistent 

Hamiltonian without the time-consuming self-consistent iterative process in DFT, it can be used 

to accelerate the electronic structure calculation of large systems and other costly advanced 

calculations, such as the electron-phonon coupling matrix via the automatic differentiation 

ability of the neural network. 
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Methods 

Hamiltonian datasets 

QM9 structure set and the molecules in Table S1 are available from http://quantum-

machine.org/datasets/, SACADA structure set is available from 

https://www.sacada.info/sacada_3D.php, and the structures of Si allotropes, SiO2 isomers, and 

BixSey crystals are downloaded from the Materials Project site69. To prepare the training set of 

untwisted bilayer MoS2, a random perturbation of up to 0.02 Å is applied to each atom and a 

slip of up to 2Å is performed in a random direction within the XY plane. We performed DFT 

calculations on the structures in the above datasets to obtain TB Hamiltonian matrices via 

OpenMX17, a software package for nano-scale material simulations based on norm-conserving 

pseudopotentials and pseudo-atomic localized basis functions. H6.0-s2p1, C6.0-s2p2d1, N6.0-

s2p2d1, O6.0-s2p2d1, F6.0-s2p2d1, Si7.0-s2p2d1, Mo7.0-s3p2d2, Bi8.0-s3p2d2, and Se7.0-

s3p2d2 pseudoatomic orbitals (PAOs) were used as the basis for the calculations. The truncation 

radius of the atomic orbits of H, C, N, O, and F is 6.0 Bohr, the truncation radius of the atomic 

orbits of Si, Mo, and Se is 7.0 Bohr, the truncation radius of the atomic orbits of Bi is 8.0 Bohr. 

The Si dislocation model was built by Atomsk70 and relaxed by GPUMD71 with a force criterion 

of 0.01 eV/Å. Moiré superlattice of bilayer MoS2 was relaxed using VASP72, 73 with DFT-D2 

correction for vdW interaction. 

Network and training details 

The Pytorch-1.11.0 74, PyG-2.0.4 75, Pymatgen 76, Nequip-0.5.3 31, and e3nn-0.5.0 77 libraries 

are used to implement HamGNN. All models used in this work have five orbital convolution 

layers, a pair interaction layer, an on-site layer, and an off-site layer. The edge distances between 

each atom and its neighbors are expanded by eight Bessel function bases. The spherical 

harmonic functions with a maximum degree Lmax = 4 are used to embed the directions of the 

edges. The O(3) representations used for the atom features and pair interaction features have 

Nfea channels with a maximum degree Lmax and parities p = 1. The number of feature channels 
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Nfea and the maximum degree Lmax for each dataset are listed in Table S2. A two-layer MLP with 

64 neurons is used to map the invariant edge embeddings to the weights of each tensor product 

path in Eqs. 17 and 19. Shifted softplus 29 function is used as the activation function in the MLP. 

The gate activation function scales the input features         00 0 j
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u   and   0
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v    as the gate. The output equivariant features of gate 

nonlinearity are        0 01 2 j
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 , where 1

ip   and 2

jp    are the activation 

functions that vary with the parity of the scalar input, defined as follows31: 
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             (25) 

 1

ip x  has the same parity as the input scalar x, while  2

jp x   always has even parity. This 

ensures that the parity of the output features of the Gate activation function is equivariant. 

To increase transferability and avoid overfitting, we include the error of the calculated energy 

bands as a regularization term in the loss function: 

1 1

k orbN N

nk nk
k norb k

L
N N

  
 

   
 H H                     (26) 

where the variables marked with a tilde refer to the corresponding predictions and λ denotes the 

loss weight of the band energy error. λ equals 0.001 in our training. When the training of the 

network has not converged, the error of the predicted Hamiltonian is large, resulting in poor or 

even divergent prediction values of the energy bands. Adding the band loss value at the 

beginning of training may cause the total loss value to diverge. Therefore, we train the network 

in two steps. First, only the mean absolute error of Hamiltonian matrices is used as the loss 
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value to train the network until the network weights converge. The parameters were optimized 

with AdamW78, 79 optimizer using an initial learning rate of 10−3. Then the mean absolute error 

of each band calculated at Nk random points in the reciprocal space is added to the loss function 

and starts the training at an initial learning rate of 10−4. When the accuracy of the model on the 

validation set is not improved after successive Npatience epochs, the learning rate will be reduced 

by a factor of 0.5. When the accuracy of the model on the validation set is not improved after 

successive Nstop epochs or the learning rate is lower than 10−6, the training will be stopped and 

the model that has the best accuracy on the validation set will be used on the test set. The values 

of some key network and training parameters on each dataset are listed in Table S2. All models 

were trained on a single NVIDIA A100 GPU. 
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