
Published as a conference paper at ICLR 2023

LEARNING ZERO-SHOT COOPERATION WITH HU-
MANS, ASSUMING HUMANS ARE BIASED

Chao Yu1∗, Jiaxuan Gao1,2∗, Weilin Liu1, Botian Xu2, Hao Tang1, Jiaqi Yang3, Yu Wang1†, Yi Wu1,2,4†

1 Tsinghua University, 2 Shanghai Artificial Intelligence Laboratory, 3 UC Berkeley, 4 Shanghai Qi Zhi Institute
zoeyuchao@gmail.com

ABSTRACT

There is a recent trend of applying multi-agent reinforcement learning (MARL)
to train an agent that can cooperate with humans in a zero-shot fashion without
using any human data. The typical workflow is to first repeatedly run self-play
(SP) to build a policy pool and then train the final adaptive policy against this
pool. A crucial limitation of this framework is that every policy in the pool is
optimized w.r.t. the environment reward function, which implicitly assumes that
the testing partners of the adaptive policy will be precisely optimizing the same
reward function as well. However, human objectives are often substantially biased
according to their own preferences, which can differ greatly from the environment
reward. We propose a more general framework, Hidden-Utility Self-Play (HSP),
which explicitly models human biases as hidden reward functions in the self-play
objective. By approximating the reward space as linear functions, HSP adopts
an effective technique to generate an augmented policy pool with biased policies.
We evaluate HSP on the Overcooked benchmark. Empirical results show that
our HSP method produces higher rewards than baselines when cooperating with
learned human models, manually scripted policies, and real humans. The HSP
policy is also rated as the most assistive policy based on human feedback.

1 INTRODUCTION

Building intelligent agents that can interact with, cooperate and assist humans remains a long-
standing AI challenge with decades of research efforts (Klien et al., 2004; Ajoudani et al., 2018;
Dafoe et al., 2021). Classical approaches are typically model-based, which (repeatedly) build an
effective behavior model over human data and plan with the human model (Sheridan, 2016; Carroll
et al., 2019; Bobu et al., 2020). Despite great successes, this model-based paradigm requires an
expensive and time-consuming data collection process, which can be particularly problematic for
complex problems tackled by today’s AI techniques (Kidd & Breazeal, 2008; Biondi et al., 2019)
and may also suffer from privacy issues (Pan et al., 2019).

Recently, multi-agent reinforcement learning (MARL) has become a promising approach for many
challenging decision-making problems. Particularly in competitive settings, AIs developed by
MARL algorithms based on self-play (SP) defeated human professionals in a variety of domains (Sil-
ver et al., 2018; Vinyals et al., 2019; Berner et al., 2019). This empirical evidence suggests a new
direction of developing strong AIs that can directly cooperate with humans in a similar “model-free”
fashion, i.e., via self-play.

Different from zero-sum games, where simply adopting a Nash equilibrium strategy is sufficient,
an obvious issue when training cooperative agents by self-play is convention overfitting. Due to
the existence of a large number of possible optimal strategies in a cooperative game, SP-trained
agents can easily converge to a particular optimum and make decisions solely based on a specific
behavior pattern, i.e., convention (Lowe et al., 2019; Hu et al., 2020), of its co-trainers, leading
to poor generalization ability to unseen partners. To tackle this problem, recent works proposed a
two-staged framework by first developing a diverse policy pool consisting of multiple SP-trained
policies, which possibly cover different conventions, and then further training an adaptive policy
against this policy pool (Lupu et al., 2021; Strouse et al., 2021; Zhao et al., 2021).

Despite the empirical success of this two-staged framework, a fundamental drawback exists. Even
though the policy pool prevents convention overfitting, each SP-trained policy in the pool remains a
solution, which is either optimal or sub-optimal, to a fixed reward function specified by the under-
lying cooperative game. This implies a crucial generalization assumption that any test-time partner

∗Equal contribution
†Corresponding Author

1

ar
X

iv
:2

30
2.

01
60

5v
1

 [
cs

.A
I]

 3
 F

eb
 2

02
3

Published as a conference paper at ICLR 2023

will be precisely optimizing the specified game reward. Such an assumption results in a pitfall in
the case of cooperation with humans. Human behavior has been widely studied in cognitive sci-
ence (Griffiths, 2015), economics (Wilkinson & Klaes, 2017) and game theory (Fang et al., 2021).
Systematic research has shown that humans’ utility functions can be substantially biased even when
a clear objective is given (Pratt, 1978; Selten, 1990; Camerer, 2011; Barberis, 2013), suggesting that
human behaviors may be subject to an unknown reward function that is very different from the game
reward (Nguyen et al., 2013). This fact reveals an algorithmic limitation of the existing SP-based
methods.

In this work, we propose Hidden-Utility Self-Play (HSP), which extends the SP-based two-staged
framework to the assumption of biased humans. HSP explicitly models the human bias via an
additional hidden reward function in the self-play training objective. Solutions to such a generalized
formulation are capable of representing any non-adaptive human strategies. We further present a
tractable approximation of the hidden reward function space and perform a random search over this
approximated space when building the policy pool in the first stage. Hence, the enhanced pool can
capture a wide range of possible human biases beyond conventions (Hu et al., 2020; Zhao et al.,
2021) and skill-levels (Dafoe et al., 2021) w.r.t. the game reward. Accordingly, the final adaptive
policy derived in the second phase can have a much stronger adaptation capability to unseen humans.

We evaluate HSP in a popular human-AI cooperation benchmark, Overcooked (Carroll et al., 2019),
which is a fully observable two-player cooperative game. We conduct comprehensive ablation stud-
ies and comparisons with baselines that do not explicitly model human biases. Empirical results
show that HSP achieves superior performances when cooperating with behavior models learned
from human data. In addition, we also consider a collection of manually scripted biased strategies,
which are ensured to be sufficiently distinct from the policy pool, and HSP produces an even larger
performance improvement over the baselines. Finally, we conduct real human studies. Collected
feedbacks show that the human participants consistently feel that the agent trained by HSP is much
more assistive than the baselines. We emphasize that, in addition to algorithmic contributions, our
empirical analysis, which considers learned models, script policies and real humans as diverse test-
ing partners, also provides a more thorough evaluation standard for learning human-assistive AIs.

2 RELATED WORK

There is a broad literature on improving the zero-shot generalization ability of MARL agents to
unseen partners (Kirk et al., 2021). Particularly for cooperative games, this problem is often called
ad hoc team play (Stone et al., 2010) or zero-shot cooperation (ZSC) (Hu et al., 2020). Since most
existing methods are based on self-play (Rashid et al., 2018; Yu et al., 2021), how to avoid conven-
tion overfitting becomes a critical challenge in ZSC. Representative works include improved policy
representation (Zhang et al., 2020; Chen et al., 2020), randomization over invariant game struc-
tures (Hu et al., 2020; Treutlein et al., 2021), population-based training (Long* et al., 2020; Lowe*
et al., 2020; Cui et al., 2021) and belief modeling for partial observable settings (Hu et al., 2021; Xie
et al., 2021). Fictitious co-play (FCP) (Strouse et al., 2021) proposes a two-stage framework by first
creating a pool of self-play policies and their previous versions and then training an adaptive policy
against them. Some techniques improves the diversity of the policy pool (Garnelo et al., 2021; Liu
et al., 2021; Zhao et al., 2021; Lupu et al., 2021) for a stronger adaptive policy (Knott et al., 2021).

We follow the FCP framework and augment the policy pool with biased strategies. Notably, tech-
niques for learning a robust policy in competitive games, such as policy ensemble (Lowe et al.,
2017), adversarial training (Li et al., 2019) and double oracle (Lanctot et al., 2017), are complemen-
tary to our focus.

Building AIs that can cooperate with humans remains a fundamental challenge in AI (Dafoe et al.,
2021). A critical issue is that humans can be systematically biased (Camerer, 2011; Russell, 2019).
Hence, great efforts have been made to model human biases, such as irrationality (Selten, 1990;
Bobu et al., 2020; Laidlaw & Dragan, 2022), risk aversion (Pratt, 1978; Barberis, 2013), and my-
opia (Evans et al., 2016). Many popular models further assume humans have hidden subject utility
functions (Nguyen et al., 2013; Hadfield-Menell et al., 2016; Eckersley, 2019; Shah et al., 2019).
Conventional methods for human-AI collaboration require an accurate behavior model over human
data (Ajoudani et al., 2018; Kwon et al., 2020; Kress-Gazit et al., 2021; Wang et al., 2022), while
we consider the setting of no human data. Hence, we explicitly model human biases as a hidden
utility function in the self-play objective to reflect possible human biases beyond conventions w.r.t.
optimal rewards. We prove that such a hidden-utility model can represent any strategy of non-
adaptive humans. Notably, it is also feasible to generalize our model to capture higher cognitive
hierarchies (Camerer et al., 2004), which we leave as a future direction.

We approximate the reward space by a linear function space over event-based features. Such a
linear representation is typical in inverse reinforcement learning (Ng & Russell, 2000), policy trans-

2

Published as a conference paper at ICLR 2023

fer (Barreto et al., 2017b), evolution computing (Cully et al., 2015) and game theory (Winterfeldt &
Fischer, 1975; Kiekintveld et al., 2013). Event-based rewards are also widely adopted as a general
design principle in robot learning (Fu et al., 2018; Zhu et al., 2019; Ahn et al., 2022). We perform
randomization over feature weights to produce diverse biased strategies. Similar ideas have been
adopted in other settings, such as generating adversaries (Paruchuri et al., 2006), emergent team-
formation (Baker, 2020), and searching for diverse Nash equilibria in general-sum games (Tang
et al., 2020). In our implementation, we use multi-reward signals as an approximate metric to filter
out duplicated policies, which is inspired by the quality diversity method (Pugh et al., 2016). There
are also some works utilizing model-based methods to solve zero-shot cooperation Wu et al. (2021).
Their focus is orthogonal to our approach since they focus more on constructing an adaptive agent,
while our approach aims to find more diverse strategies. Besides, we adopt an end-to-end fashion to
train an adaptive agent, which is more general. Lastly, our final adaptive agent assumes a zero-shot
setting without any data from its testing partner. This can be further extended by allowing meta-
adaptation at test time (Charakorn et al., 2021; Gupta et al., 2021; Nekoei et al., 2021), which we
leave as a future direction.

3 PRELIMINARY

Two-Player Human-AI Cooperative Game: A human-AI cooperative game is defined on a world
model, i.e., a two-player Markov decision process denoted by M = 〈S,A, P,R〉, with one player
with policy πA being an AI and the other with policy πH being a human. S is a set of world
states. A is a set of possible actions for each player. P is a transition function over states given
the actions from both players. R is a global reward function. A policy πi produces an action
a

(i)
t ∈ A given a world state st ∈ S at the time step t. We use the expected discounted return
J(πA, πH) = E

st,a
(i)
t

[∑
t γ

tR(st, a
(A)
t , a

(H)
t)

]
as the objective. Note that J(πH , πA) can be simi-

larly defined, and we use J(πA, πH) for conciseness without loss of generality. Let PH : Π→ [0, 1]
be the unknown distribution of human policies. The goal is to find a policy πA that maximizes the
expected return with an unknown human, i.e., EπH∼PH

[J(πH , πA)]. In practice, many works con-
struct or learn a policy distribution P̂H to approximate real-world human behaviors, leading to an
approximated objective for πA, i.e., Eπ̂H∼P̂H

[J(πA, π̂H)].

Self-Play for Human-AI Cooperation: Self-play (SP) optimizes J(π1, π2) with two parametric
policies π1 and π2 and takes π1 as πA without use of human data. However, SP suffers from poor
generalization since SP converges to a specific optimum and overfits the resulting behavior conven-
tion. Population-based training (PBT) improves SP by representing πi as a mixture of K individual
policies {π(k)

i }Kk=1 and runs cross-play between policies by optimizing the expected return (Long*
et al., 2020; Lowe* et al., 2020; Cui et al., 2021). PBT can be further improved by adding a diversity
bonus over the population (Garnelo et al., 2021; Liu et al., 2021; Lupu et al., 2021).

Fictitious Co-Play (FCP): FCP (Strouse et al., 2021) is a recent work on zero-shot human-AI
cooperation with strong empirical performances. FCP extends PBT via a two-stage framework. In
the first stage, FCP trains K individual policy pairs {(π(k)

1 , π
(k)
2)}Kk=1 by optimizing J(π

(k)
1 , π

(k)
2)

for each k. Each policy pair (π
(k)
1 , π

(k)
2) may quickly converge to a distinct local optimum. Then

FCP constructs a policy pool Π2 = {π̃(k)
2 , π

(k)
2 }Kk=1 with two past versions of each converged SP

policy π(k)
2 , denoted by π̃(k)

2 . In the second stage, FCP constructs a human proxy distribution P̂H
by randomly sampling from Π2 and trains πA by optimizing Eπ̂H∼P̂H

[J(πA, π̂H)]. We remark
that, for a better cooperation, the adaptive policy πA should condition on the state-action history in
an episode to infer the intention of its partner. Individual SP policies ensure P̂H contains diverse
conventions while using past versions enables P̂H to cover different skill levels. So, the final policy
πA can be forced to adapt to humans with unknown conventions or sub-optimalities. Maximum
Entropy Population-based Training (MEP) (Zhao et al., 2021) is the latest variant of FCP, which
adopts the population entropy as a diversity bonus in the first stage to improve the generalization of
the learned πA.

4 COOPERATING WITH HUMANS IN Overcooked: A MOTIVATING EXAMPLE

Overcooked Game: Overcooked (Carroll et al., 2019) is a fully observable two-player cooperative
game developed as a testbed for human-AI cooperation. In Overcooked, players cooperatively ac-
complish different soup orders and serve the soups for rewards. Basic game items include onions,
tomatoes, and dishes. An agent can move in the game or “interact” to trigger some events, such as
grabbing/putting an item, serving soup, etc., depending on the game state. To finish an order, players

3

Published as a conference paper at ICLR 2023

Figure 1: Layouts in Overcooked. From left to right are Asymmetric Advantages, Coordination
Ring, Counter Circuit, Distant Tomato and Many Orders respectively, with orders shown below.

should put a proper amount of ingredients into the pot and cook for some time. Once a soup is fin-
ished, players should pick up the soup with a dish and serve it to get a reward. Different orders have
different cooking times and different rewards. Fig. 1 demonstrates five layouts we consider, where
the first three onion-only layouts are adopted from (Carroll et al., 2019), while the latter two, Distant
Tomato and Many Orders, are newly introduced to include tomato orders to make the problem more
challenging: an AI needs to carefully adapt its behavior to either cook onions or tomatoes according
to the other player’s actions.

A Concrete Example of Human Preference: Fig. 2 illustrates a motivating example in Distant
Tomato (the 4th layout in Fig. 1). There are two orders: one requires three onions, and the other
requires three tomatoes. We run FCP on this multi-order scenario, and all the policies in the FCP
policy pool converge to the specific pattern of only cooking onion soup (Fig. 2a). Hence, the final
adaptive policy by FCP only learns to grab onions and cook onion soups. Cooking tomato soup is
a sub-optimal strategy that requires many extra moves, so the onion-only policy pool is exactly the
solution to the FCP self-play objective under the environment reward. However, it is particularly
reasonable for a human to dislike onions and accordingly only grab tomatoes in a game. To be an
assistive AI, the policy should adapt its strategy to follow the human preference for tomatoes. On
the contrary, as shown in Fig. 2b, the FCP policy completely ignores human moves for tomatoes
and even results in poor cooperation by producing valueless wrong orders of mixed onions and
tomatoes. Thus, to make an FCP agent human-assistive, the first-stage policy pool should not only
contain optimal strategies (i.e., onion soups) of different conventions but also cover diverse human
preferences (e.g., tomatoes) even if these preferences are sub-optimal under the environment reward.

(a) FCP-FCP (b) FCP’s failure case when cooperating with a human player

Figure 2: Motivating example. (a) FCP converges to the optimal onion soup strategy. (b) A failure
case of FCP with a human partner: FCP agent corrupts the human’s plan of cooking tomato soups.

5 METHODOLOGY

We introduce a general formulation to model human preferences and develop a tractable learning
objective (Sec. 5.2). The algorithm, Hidden-Utility Self-Play (HSP), is summarized in Sec. 5.3.

5.1 HIDDEN-UTILITY MARKOV GAME

The key insight from Sec. 4 is that humans may not truthfully behave under the environment reward.
Instead, humans are biased and driven by their own utility functions, which are formulated below.

Definition: A two-player hidden utility Markov game is defined as 〈S,A, P,Rw, Rt〉. 〈S,A, P,Rt〉
corresponds to the original game MDP with Rt being the task reward function. Rw denotes an
additional hidden reward function. There are two players, πa, whose goal is to maximize the task
reward Rt, and πw, whose goal is to maximize the hidden reward Rw. Rw is only visible to πw.

Let J(π1, π2|R) denote the expected return under reward R with a policy π1 and π2. During
self-play, πa optimizes J(πa, πw|Rt) while πw optimizes J(πa, πw|Rw). A solution policy pro-
file (π∗a, π

∗
w) to the hidden utility Markov game is now defined by a Nash equilibrium (NE):

J(π∗a, π
∗
w|Rw) ≥ J(π∗a, π

′
w|Rw),∀π′w and J(π∗a, π

∗
w|Rt) ≥ J(π′a, π

∗
w|Rt),∀π′a. �

Intuitively, with a suitable hidden reward function Rw, we can obtain any possible (non-adaptive
and consistent) human policy by solving the hidden-utility game induced by Rw.
Lemma 5.1. Given an MDP M = 〈S,A, P,Rt〉, for any policy π : S × A → [0, 1], there
exists a hidden reward function Rw such that the two-player hidden utility Markov game M ′ =
〈S,A, P,Rw, Rt〉 has a Nash equilibrium (π∗a, π

∗
w) where π∗w = π.

4

Published as a conference paper at ICLR 2023

Lemma 5.1 connects any human behavior to a hidden reward function. Then the objective of the
adaptive policy πA in Eq. (3) can be formulated under the hidden reward function spaceR as follows.
Theorem 5.1. For any ε > 0, there exists a mapping π̃w where π̃w(Rw) denotes the derived policy
π∗w in the NE of the hidden utility Markov game Mw = 〈S,A, P,Rw, Rt〉 induced by Rw, and a
distribution PR : R → [0, 1] over the hidden reward space R, such that, for any adaptive policy
πA ∈ arg maxπ′ ERw∼PR

[J(π′, π̃w(Rw))], πA approximately maximizes the ground-truth objective
with at most an ε gap, i.e., EπH∼PH

[J(πA, πH)] ≥ maxπ′ EπH∼PH
[J(π′, πH)]− ε.

Theorem 5.1 indicates that it is possible to derive diverse human behaviors by properly designing
a hidden reward distribution P̂R, which can have a much lower intrinsic dimension than the policy
distribution. In Overcooked, human preferences can be typically described by a few features, such as
interaction with objects or certain type of game events, like finishing an order or delivering a soup.
By properly approximating the hidden reward distribution as P̂R, the learning objective becomes,

πA = arg max
π′

ERw∼P̂R
[J(π′, π̃w(Rw))] (1)

Eq. (1) naturally suggests a two-staged solution by first constructing a policy pool {π̃w(R) : R ∼
P̂R} from P̂R and then training πA to maximize the game reward w.r.t. the induced pool.

5.2 CONSTRUCT A POLICY POOL OF DIVERSE PREFERENCES

Event-based Reward Function Space: The fundamental question is how to design a proper hidden
reward function space R. In general, a valid reward space is intractably large. Inspired by the
fact that human preferences are often event-centric, we formulate R as linear functions over event
features, namely R = {Rw : Rw(s, a1, a2) = φ(s, a1, a2)Tw, ||w||∞ ≤ Cmax}. Cmax is a bound
on the feature weight w while φ : S ×A×A → Rm specifies occurrences of different game events
when taking joint action (a1, a2) at state s.

Derive a Diverse Set of Biased Policies: We simply perform a random search over the feature
weight w to derive a set of diverse behaviors. We first draw N samples {w(i)}i∈[N] for the feature
weight w where w(i)

j is sampled uniformly from a set of values Cj , leading to a set of hidden reward

functions {R(i)
w : R

(i)
w (s, a1, a2) = φ(s, a1, a2)Tw(i)}i∈[N]. For each hidden reward function R(i)

w ,
we find an approximated NE, π(i)

w , π
(i)
a , of the hidden utility Markov game induced by R(i)

w through
self-play. The above process produces a policy pool {π(i)

w }i∈[N] that can cover a wide range of
behavior preferences.

Algorithm 1: Greedy Policy Selection
S ← {i0} where i0 ∼ [N];
for i = 1→ K − 1 do

k′ ← argmaxk′ /∈S ED(S ∪ {k′});
S ← S ∪ {k′};

end

Policy Filtering: We notice that the derived pool of-
ten contains a lot of similar policies. This is because
the same policy can be optimal under a set of reward
functions, which is typical in multi-objective optimiza-
tion (Chugh et al., 2019; Tabatabaei et al., 2015). Du-
plicated policies simply slow down training without any
help to learn πA. For more efficient training, we adopt a
behavior metric, i.e., event-based diversity, to only keep
distinct ones from the initial pool. For each biased policy π(i)

w , let EC(i) denote the expected event
count, i.e. E[

∑T
t=1 φ(st, at)|π(i)

w , π
(i)
a]. We define event-based diversity for a subset S ⊆ [N] by

normalized pairwise EC differences, i.e., ED(S) =
∑
i,j∈S

∑
k ck · |EC(i)

k − EC(j)
k |, where ck is

a frequency normalization constant. Finding a subset S∗ of size K with the optimal ED can be
expensive. We simply adopt a greedy method in Algo. 1 to select policies incrementally.

5.3 HIDDEN-UTILITY SELF-PLAY Algorithm 2: Hidden-Utility Self-Play
for i = 1→ N do

Train π(i)
w and π(i)

a under sampled R(i)
w ;

end
Run Algo. 1 to only keep K policies;
Initial policy πA;
repeat

Rollout with πA and sampled π(i)
w ;

Update πA;
until enough iterations;

Given the filtered policy pool, we train the final adap-
tive policy πA over rollout games by πA and randomly
sampled policies from the pool, which completes our
overall algorithm HSP in Algo. 2.

We implement HSP using MAPPO (Yu et al., 2021)
as the RL algorithm. In the first stage, we use MLP
policies for fast SP convergence. In practice, we use

5

Published as a conference paper at ICLR 2023

half of the policy pool to train biased policies and the other half to train MEP policies (Zhao et al.,
2021) under the game reward. This increases the overall pool towards the game reward, leading
to improved empirical performances. For the final adaptive training, as suggested in (Tang et al.,
2020), we add the identity of each biased policy as an additional feature to the critic. For event-
based features for the reward space, we consider event types, including interactions with basic items
and events causing non-zero rewards in Overcooked. Full implementation details can be found in
Appendix D and E.

6 EXPERIMENTS

Baselines. We compare HSP with other SP-based baselines, including Fictitious Co-Play (FCP),
Maximum Entropy Population-based training (MEP), and Trajectory Diversity-based PBT (Traj-
Div). All methods follow a two-stage framework with a final pool size of 36, which we empirically
verified to be sufficiently large to avoid performance degradation for all methods. More analysis on
pool size can be found in Appendix F.2.1. The implementation details of baselines can be found
in Appendix D.2. Each policy is trained for 100M timesteps for convergence over 5 random seeds.
Full training details with hyper-parameter settings can be found in Appendix E.1.

Evaluation. We aim to examine whether HSP can cooperate well with (1) learned human models,
(2) scripted policies with strong preferences, and (3) real humans. We use both game reward and
human feedback as evaluation metrics. We remark that since a biased human player may play a sub-
optimal strategy, the game reward may not fully reflect the performance gap between the baselines
and HSP. Our goal is to ensure the learned policy is effective for biased partners/humans. Therefore,
we consider human feedback as the fundamental metric. Ablation studies are also performed to
investigate the impact of our design choices in HSP. In tables, maximum returns or comparable
returns within a threshold of 5 are marked in bold. Full results can be found in Appendix F.

6.1 COOPERATION WITH LEARNED HUMAN MODELS IN ONION-ONLY LAYOUTS

For evaluation with learned human models, we adopted the models provided by (Carroll et al., 2019),
which only support onion-only layouts, including Asymm. Adv., Coord. Ring and Counter Circ..
The results are shown in Tab. 1. For a fair comparison, we reimplement all the baselines, labeled
MEP, FCP, and TrajDiv, with the same training steps and policy pool size as HSP. We additionally
take the best performance ever reported in the existing literature, labeled Existing SOTA in Tab. 1.
Our implementation achieves substantially higher scores than Existing SOTA when evaluated with
the same human proxy models. HSP further outperforms other reimplementations in Asymm. Adv.
and is comparable with the best baseline in the rest. Full results of the evaluation with learned human
models can be found in Appendix F.1. We emphasize that the improvement is marginal because the
learned human models have limited representation power to imitate natural human behaviors, which
typically cover many behavior modalities. Fig.8 in Appendix F.1.1 shows trajectories induced by
the learned human models only cover a narrow subspace of trajectories played by human players.
Further analysis of the learned human models can be found in Appendix F.1.1. Furthermore, our
implementation of baselines achieves substantially better results than the original papers (Carroll
et al., 2019; Zhao et al., 2021), which also makes the improvement margin smaller.

Pos. Asymm. Adv. Coord. Ring Counter Circ.

Existing SOTA 1 141.1(12.5) 92.7(7.4) 54.5(2.3)

2 84.6(16.3) 107.3(6.4) 55.8(3.6)

FCP 1 282.8(9.4) 161.3(1.6) 95.9(2.0)

2 203.8(8.2) 161.0(2.7) 92.7(1.3)

MEP 1 291.7(4.6) 161.8(0.7) 108.8(4.2)

2 203.4(2.0) 164.2(2.1) 111.1(0.7)

TrajDiv 1 289.3(8.8) 150.8(3.1) 60.1(5.0)

2 194.2(0.7) 142.1(2.3) 53.7(12.4)

HSP 1 300.3(2.2) 160.0(2.6) 107.4(3.5)

2 217.1(3.3) 160.6(3.3) 106.6(3.0)

Table 1: Comparison of average episode reward and standard deviation when cooperating with
learned human models. The Pos. column indicates the roles played by AI policies. Existing SOTA
is the best performance ever reported in the existing literature. HSP achieves substantially higher
scores than Existing SOTA. And HSP further outperforms other methods in Asymm. Adv. and is
comparable with the best baseline in the rest.

6.2 ABLATION STUDIES

6

Published as a conference paper at ICLR 2023

Figure 3: Performance of different pool
construction strategies. Results suggest
that it is beneficial to incorporate MEP
policies and filter duplicated policies.

We investigate the impact of our design choices, includ-
ing the construction of the final policy pool and the batch
size for training the adaptive policy.

Policy Pool Construction: HSP has two techniques for
the policy pool, i.e., (1) policy filtering to remove dupli-
cated biased policies and (2) the use of MEP policies un-
der the game reward for half of the pool size. We measure
the performance with human proxies by turning these op-
tions off. For “HSP w.o. Filtering”, we keep all policies
by random search in the policy pool, resulting in a larger
pool size of 54 (18 MEP policies and a total of 36 ran-
dom search ones). For“HSP w.o. MEP”, we exclude MEP
policies from the policy pool and keep all biased policies
without filtering, which leads to the same pool size of 36. The results are shown in Fig. 3 and the de-
tailed numbers can be found in Appendix F.2.2. By excluding MEP policies, the HSP variant (HSP
w.o. MEP) performs worse in the more complicated layout Counter Circ. while remaining compara-
ble in the other two simpler ones. So we suggest including a few MEP policies when possible. With
policy filtering turned off, even though the policy pool size grows, the performance significantly
decays in both Coord. Ring and Counter Circ. layouts, suggests that duplicated biased policies can
hurt policy generalization.

Batch Size: We measure the training curves of the final adaptive policy under the game reward using
different numbers of parallel rollout threads in MAPPO. More parallel threads indicate a larger batch
size. The results in all five layouts are reported in Fig. 4. In general, we observe that a larger batch
size often leads to better training performance. In particular, when the batch size is small, i.e., using
50 or 100 parallel threads, training becomes significantly unstable and even breaks in three layouts.
Note that the biased policies in the HSP policy pool have particularly diverse behaviors, which cause
a high policy gradient variance when training the final adaptive policy. Therefore, a sufficiently large
training batch size can be critical to stable optimization. We adopt 300 parallel threads in all our
experiments for a fair comparison.

Figure 4: Average game reward by using different numbers of parallel rollout threads in MAPPO to
train the final adaptive policy. More parallel threads imply a larger training batch size.

Practical Remark: Overall, we suggest using a pool size of 36 and including a few MEP policies
for the best empirical performance. Besides, a sufficiently large training batch size can help stable
optimization, and we use the same batch size for all methods for a fair comparison.

6.3 COOPERATION WITH SCRIPTED POLICIES WITH STRONG BEHAVIOR PREFERENCES

We empirically notice that human models learned by imitating the entire human trajectories cannot
well capture a wide range of behavior modalities. So, we manually designed a set of script policies
to encode some particular human preferences: Onion/Tomato Placement, which continuously places
onions or tomatoes into the pot, Onion/Dish Everywhere, which keeps putting onions or dishes on
the counters, Tomato/Onion Placement and Delivery, which puts tomatoes/onions into the pot in
half of the time and tries to deliver soup in the other half of the time. For a fair comparison, we
ensure that all scripted policies are strictly different from the HSP policy pool. More details about
scripted policies and a full evaluation can be found in Appendix D.3.

We remark that scripted policies are only used for evaluation but not for training HSP. Tab. 2 shows
the average game reward of all the methods when paired with scripted policies, where HSP signif-
icantly outperforms all baselines. In particular, in Distant Tomato, when cooperating with a strong
tomato preference policy (Tomato Placement), HSP achieves a 10× higher score than other base-
lines, suggesting that the tomato-preferred behavior is well captured by HSP.
6.4 COOPERATION WITH HUMAN PARTICIPANTS

We recruited 60 volunteers (28.6% female, 71.4% male, age between 18–30) by posting the ex-
periment advertisement on a public platform and divided them into 5 groups for 5 layouts. They
are provided with a detailed introduction to the basic gameplay and the experiment process. Vol-

7

Published as a conference paper at ICLR 2023

Scripts FCP MEP TrajDiv HSP

Asymm. Adv. Onion Placement 334.8(13.0) 330.5(14.2) 323.6(17.0) 376.8(9.9)

Onion Place.&Delivery 297.7(3.4) 298.5(3.4) 290.0(4.7) 300.1(4.1)

Coord. Ring Onion Everywhere 109.1(7.9) 124.0(3.4) 116.9(8.9) 121.2(12.6)

Dish Everywhere 94.4(3.8) 100.2(5.3) 107.3(5.3) 115.4(7.4)

Counter Circ. Onion Everywhere 63.7(9.2) 88.9(5.1) 82.0(12.8) 107.5(3.5)

Dish Everywhere 57.0(5.3) 53.0(1.8) 57.2(2.2) 78.5(4.1)

Distant Tomato Tomato Placement 15.6(5.2) 20.1(10.6) 23.3(9.5) 277.9(14.3)

Tomato Place.&Delivery 177.9(6.1) 180.4(8.7) 164.8(19.6) 234.6(15.1)

Many Orders Tomato Placement 282.6(16.2) 225.8(60.8) 259.2(7.9) 317.8(9.3)

Tomato Place.&Delivery 329.1(5.3) 328.1(12.6) 295.7(2.4) 324.5(3.9)

Table 2: Average episode reward and standard deviation with unseen testing scripted policies. HSP
significantly outperforms all baselines.

unteers are fully aware of all their rights and experiments are approved with the permission
of the department. A detailed description of the human study can be found in Appendix F.4.

Figure 5: Human prefer-
ence in the warm-up stage.
The unit denotes the differ-
ence between the percent-
age of human players who
prefer row partners over
column partners and hu-
man players who prefer col-
umn partners over row part-
ners. HSP is consistently
preferred by human partic-
ipants with a clear margin.

The experiment has two stages:

• Warm-up Stage: Participants could play the game freely to ex-
plore possible AI behaviors. They are asked to rank AI policies
according to the degree of assistance during free plays.
• Exploitation Stage: Participants are instructed to achieve a score

as high as possible.

We note that our user study design differs from that of the original
Overcooked paper (Carroll et al., 2019). The additional warm-up
stage allows for diverse human behaviors under any possible pref-
erence, suggesting a strong testbed for human-assistive AIs.

6.4.1 RESULTS OF THE WARM-UP STAGE

The warm-up stage is designed to test the performance of AI policies
in the face of diverse human preferences. Fig. 5 visualizes the human
preference for different methods reported in the warm-up stage. The
unit represents the difference between the percentage of human play-
ers who prefer row partners over column partners and human players
who prefer column partners over row partners. The detailed calcu-
lation method can be found in Appendix F.4.3. HSP is preferred by
humans with a clear margin. Since humans can freely explore any
possible behavior, the results in Fig. 5 imply the strong generalization
capability of HSP. We also summarize feedback from human partici-
pants in Appendix F.4.2.

6.4.2 RESULTS OF THE EXPLOITATION STAGE

The exploitation stage is designed to test the scoring capability of different AIs. Note that it is
possible that a human player simply adapts to the AI strategy when instructed to have high scores.
So, in addition to final rewards, we also examine the emergent human-AI behaviors to measure the
human-AI cooperation level. The experiment layouts can be classified into two categories according
to whether the layout allows diverse behavior modes. The first category contains simple onion-only
layouts that are taken from (Carroll et al., 2019), including Asymm. Adv., Coord. Ring and Counter
Circ.. The second category contains newly introduced layouts with both onions and tomatoes, Dis-
tant Tomato and Many Orders, which allow for a much wider range of behavior modes.

Onion-only Layouts: Fig. 6a shows the average reward in onion-only layouts for different methods
when paired with humans. Among these onion-only layouts, all methods have comparable episode
reward in simpler ones (Asymm. Adv. and Coord. Ring), while HSP is significantly better in
the most complex Counter Circ. layout. Fig. 6b shows the frequency of successful onion passing
between the human player and the AI player. The learned HSP policy is able to use the middle
counter for passing onions, while the baseline policies are less capable of this strategy.

Layouts with Both Onions and Tomatoes: The results and behavior analysis in Distant Tomato
and Many Orders are shown as follows,

• Distant Tomato: In Distant Tomato, the optimal strategy is always cooking onion soups, while
it is suboptimal to cook tomato soups due to the much more time spent on moving. Interestingly,
our human-AI experiments found that humans may have diverse biases over onions and tomatoes.
However, all learned baseline policies tend to have a strong bias towards onions and often place
onions into a pot with tomatoes in it already. Tab. 3 reports the average number of such Wrong

8

Published as a conference paper at ICLR 2023

(a) Onion-Only Layouts (b) Counter Circ.

Figure 6: (a) Average episode reward in onion-only layouts of different methods when paired with
humans in the exploitation stage. HSP has comparable performance with the baselines in Asymm.
Adv. and Coord. Ring, and is significantly better in the most complex Counter Circ. layout. (b)
The onion passing frequency in Counter Circ. shows that HSP is the most capable, among other
baselines, of passing onions via the counter, suggesting better capabilities to assist humans.

Placements made by different AI players. HSP makes the lowest number of wrong placements
and is the only method that can correctly place additional tomatoes into a pot partially filled
with tomatoes, labeled Correct Placements. This suggests that HSP is the only effective method
to cooperate with biased human strategies, e.g., preferring tomatoes. In addition, as shown in
Tab. 3, even when humans play the optimal strategy of cooking onion soups, HSP still achieves
comparable performance with other methods.
• Many Orders: In Many Orders, an effective strategy is to utilize all three pots to cook soups.

Our experiments found that baseline policies tend to ignore the middle pot. Tab. 4 shows the
average number of soups picked up from the middle pot by different AI players. The learned
HSP policy is much more active in taking soups from the middle pot, leading to more soup
deliveries. Furthermore, HSP achieves a substantially higher episode reward than other methods,
as shown in Tab. 4.

FCP MEP TrajDiv HSP

Onion-Preferred Episode Reward ↑ 343.65 325.08 334.73 340.3
Wrong Placements ↓ 0.37 0.41 0.38 0.21
Correct Placements ↑ 0.0 0.0 0.0 1.41

Table 3: Average onion-preferred episode reward and frequency of different emergent behaviors
in Distant Tomato during the exploitation stage. Onion-Preferred Episode Reward is the average
episode reward when humans prefer onions. Wrong Placements and Correct Placements are the
average numbers of wrong and correct placements into a pot partially filled with tomatoes. HSP
makes the lowest number of wrong placements and is the only method that can place tomatoes
correctly, suggesting that HSP is effective at cooperating with biased human strategies.

FCP MEP TrajDiv HSP

Episode Reward ↑ 316.81 320.61 323.52 382.52
Number of Soups Picked Up from the Middle Pot ↑ 1.93 2.03 1.33 5.64

Table 4: Average episode reward and average number of picked-up soups from the middle pot by
different AI players in Many Orders during the exploitation stage. HSP achieves significantly better
performance and is much more active in taking soups from the middle pot than baselines.

7 CONCLUSION

We developed Hidden-Utility Self-Play (HSP) to tackle the problem of zero-shot human-AI cooper-
ation by explicitly modeling human biases as an additional reward function in self-play. HSP first
generates a pool of diverse strategies and then trains an adaptive policy accordingly. Experiments
verified that agents trained by HSP are more assistive for humans than baselines in Overcooked.
Although our work suggests a new research direction on this fundamentally challenging problem,
there are still limitations to be addressed. HSP requires domain knowledge to design a suitable set
of events. There exists some work on learning reward functions rather than assuming event-based
rewards (Shah et al., 2019; Zhou et al., 2021). So a future direction is to utilize learning-based meth-
ods to design rewards automatically. Another major limitation is the computation needed to obtain a
diverse policy pool. Possible solutions include fast policy transfer and leveraging a prior distribution
of reward functions extracted from human data (Barreto et al., 2017a). Learning and inferring the
policy representations of partners could also provide further improvement. We leave these issues as
our future work.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This research was supported by National Natural Science Foundation of China (No.U19B2019,
62203257, M-0248), Tsinghua University Initiative Scientific Research Program, Tsinghua-Meituan
Joint Institute for Digital Life, Beijing National Research Center for Information Science, Technol-
ogy (BNRist), and Beijing Innovation Center for Future Chips and 2030 Innovation Megaprojects
of China (Programme on New Generation Artificial Intelligence) Grant No. 2021AAA0150000.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-Schäffer, Kazuhiro Kosuge,
and Oussama Khatib. Progress and prospects of the human-robot collaboration. Autonomous
Robots, 42(5):957–975, 2018.

Bowen Baker. Emergent reciprocity and team formation from randomized uncertain social prefer-
ences. Advances in Neural Information Processing Systems, 33:15786–15799, 2020.

Nicholas C Barberis. Thirty years of prospect theory in economics: A review and assessment.
Journal of Economic Perspectives, 27(1):173–96, 2013.

Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Has-
selt, and David Silver. Successor features for transfer in reinforcement learning. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017a. URL https://proceedings.neurips.cc/paper/2017/file/
350db081a661525235354dd3e19b8c05-Paper.pdf.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017b.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Francesco Biondi, Ignacio Alvarez, and Kyeong-Ah Jeong. Human–vehicle cooperation in au-
tomated driving: A multidisciplinary review and appraisal. International Journal of Human–
Computer Interaction, 35(11):932–946, 2019.

Andreea Bobu, Dexter RR Scobee, Jaime F Fisac, S Shankar Sastry, and Anca D Dragan. Less is
more: Rethinking probabilistic models of human behavior. In Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, pp. 429–437, 2020.

Colin F Camerer. Behavioral game theory: Experiments in strategic interaction. Princeton univer-
sity press, 2011.

Colin F Camerer, Teck-Hua Ho, and Juin-Kuan Chong. A cognitive hierarchy model of games. The
Quarterly Journal of Economics, 119(3):861–898, 2004.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-AI coordination. Advances in neural
information processing systems, 32, 2019.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Learning to cooperate with
unseen agents through meta-reinforcement learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1478–1479, 2021.

Shuo Chen, Ewa Andrejczuk, Zhiguang Cao, and Jie Zhang. Aateam: Achieving the ad hoc team-
work by employing the attention mechanism. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7095–7102, 2020.

Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. A survey on handling com-
putationally expensive multiobjective optimization problems with evolutionary algorithms. Soft
Computing, 23(9):3137–3166, 2019.

10

https://proceedings.neurips.cc/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf

Published as a conference paper at ICLR 2023

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for zero-shot
coordination in hanabi. Advances in Neural Information Processing Systems, 34, 2021.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, 2015.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and Thore Graepel.
Cooperative AI: machines must learn to find common ground, 2021.

Peter Eckersley. Impossibility and uncertainty theorems in ai value alignment (or why your agi
should not have a utility function). In SafeAI@ AAAI, 2019.

Owain Evans, Andreas Stuhlmüller, and Noah Goodman. Learning the preferences of ignorant,
inconsistent agents. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Fei Fang, Shutian Liu, Anjon Basak, Quanyan Zhu, Christopher D Kiekintveld, and Charles A
Kamhoua. Introduction to game theory. Game Theory and Machine Learning for Cyber Security,
pp. 21–46, 2021.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control with
events: A general framework for data-driven reward definition. Advances in neural information
processing systems, 31, 2018.

Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk Oh, Gauthier
Gidel, Hado van Hasselt, and David Balduzzi. Pick your battles: Interaction graphs as population-
level objectives for strategic diversity. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1501–1503, 2021.

Thomas L Griffiths. Manifesto for a new (computational) cognitive revolution. Cognition, 135:
21–23, 2015.

Abhinav Gupta, Marc Lanctot, and Angeliki Lazaridou. Dynamic population-based meta-learning
for multi-agent communication with natural language. Advances in Neural Information Process-
ing Systems, 34, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-belief
learning. In International Conference on Machine Learning, pp. 4369–4379. PMLR, 2021.

Cory D Kidd and Cynthia Breazeal. Robots at home: Understanding long-term human-robot in-
teraction. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3230–3235. IEEE, 2008.

Christopher Kiekintveld, Towhidul Islam, and Vladik Kreinovich. Security games with interval
uncertainty. In Proceedings of the 2013 international conference on Autonomous agents and
multi-agent systems, pp. 231–238, 2013.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

Glen Klien, David D Woods, Jeffrey M Bradshaw, Robert R Hoffman, and Paul J Feltovich. Ten
challenges for making automation a "team player" in joint human-agent activity. IEEE Intelligent
Systems, 19(6):91–95, 2004.

Paul Knott, Micah Carroll, Sam Devlin, Kamil Ciosek, Katja Hofmann, Anca Dragan, and Rohin
Shah. Evaluating the robustness of collaborative agents. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1560–1562, 2021.

Hadas Kress-Gazit, Kerstin Eder, Guy Hoffman, Henny Admoni, Brenna Argall, Ruediger Ehlers,
Christoffer Heckman, Nils Jansen, Ross Knepper, Jan Křetínskỳ, et al. Formalizing and guaran-
teeing human-robot interaction. Communications of the ACM, 64(9):78–84, 2021.

11

Published as a conference paper at ICLR 2023

Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin, Dylan P Losey, and Dorsa Sadigh. When
humans aren’t optimal: Robots that collaborate with risk-aware humans. In 2020 15th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pp. 43–52. IEEE, 2020.

Cassidy Laidlaw and Anca Dragan. The boltzmann policy distribution: Accounting for systematic
suboptimality in human models. In International Conference on Learning Representations, 2022.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Péro-
lat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforce-
ment learning. Advances in neural information processing systems, 30, 2017.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4213–4220, 2019.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and
Yaodong Yang. Towards unifying behavioral and response diversity for open-ended learning in
zero-sum games. Advances in Neural Information Processing Systems, 34:941–952, 2021.

Qian Long*, Zihan Zhou*, Abhinav Gupta, Fei Fang, Yi Wu†, and Xiaolong Wang†. Evolutionary
population curriculum for scaling multi-agent reinforcement learning. In International Confer-
ence on Learning Representations, 2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Advances in neural information process-
ing systems, 30, 2017.

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin. On the pitfalls of
measuring emergent communication. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 693–701, 2019.

Ryan Lowe*, Abhinav Gupta*, Jakob Foerster, Douwe Kiela, and Joelle Pineau. On the interac-
tion between supervision and self-play in emergent communication. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rJxGLlBtwH.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International Conference on Machine Learning, pp. 7204–7213. PMLR, 2021.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coor-
dination as a realistic scenario for lifelong learning. In International Conference on Machine
Learning, pp. 8016–8024. PMLR, 2021.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In in Proc. 17th
International Conf. on Machine Learning. Citeseer, 2000.

Thanh Nguyen, Rong Yang, Amos Azaria, Sarit Kraus, and Milind Tambe. Analyzing the effec-
tiveness of adversary modeling in security games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 27, pp. 718–724, 2013.

Xinlei Pan, Weiyao Wang, Xiaoshuai Zhang, Bo Li, Jinfeng Yi, and Dawn Song. How you act
tells a lot: Privacy-leaking attack on deep reinforcement learning. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 368–376, 2019.

Praveen Paruchuri, Milind Tambe, Fernando Ordónez, and Sarit Kraus. Security in multiagent
systems by policy randomization. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pp. 273–280, 2006.

John W Pratt. Risk aversion in the small and in the large. In Uncertainty in economics, pp. 59–79.
Elsevier, 1978.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers in Robotics and AI, 3:40, 2016.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Stuart Russell. Human compatible: Artificial Intelligence and the problem of control. Penguin,
2019.

12

https://openreview.net/forum?id=rJxGLlBtwH
https://openreview.net/forum?id=rJxGLlBtwH

Published as a conference paper at ICLR 2023

Reinhard Selten. Bounded rationality. Journal of Institutional and Theoretical Economics
(JITE)/Zeitschrift für die gesamte Staatswissenschaft, 146(4):649–658, 1990.

Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On the feasibility of learning, rather
than assuming, human biases for reward inference. In International Conference on Machine
Learning, pp. 5670–5679. PMLR, 2019.

Thomas B Sheridan. Human-robot interaction: status and challenges. Human factors, 58(4):525–
532, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Mohammad Tabatabaei, Jussi Hakanen, Markus Hartikainen, Kaisa Miettinen, and Karthik Sindhya.
A survey on handling computationally expensive multiobjective optimization problems using sur-
rogates: non-nature inspired methods. Structural and Multidisciplinary Optimization, 52(1):1–25,
2015.

Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei
Du, Yu Wang, and Yi Wu. Discovering diverse multi-agent strategic behavior via reward random-
ization. In International Conference on Learning Representations, 2020.

Johannes Treutlein, Michael Dennis, Caspar Oesterheld, and Jakob Foerster. A new formalism,
method and open issues for zero-shot coordination. In International Conference on Machine
Learning, pp. 10413–10423. PMLR, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Chen Wang, Claudia Pérez-D’Arpino, Danfei Xu, Li Fei-Fei, Karen Liu, and Silvio Savarese. Co-
gail: Learning diverse strategies for human-robot collaboration. In Conference on Robot Learn-
ing, pp. 1279–1290. PMLR, 2022.

Nick Wilkinson and Matthias Klaes. An introduction to behavioral economics. Macmillan Interna-
tional Higher Education, 2017.

Detlof Von Winterfeldt and Gregory W Fischer. Multi-attribute utility theory: models and assess-
ment procedures. Utility, probability, and human decision making, pp. 47–85, 1975.

Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
Kleiman-Weiner. Too many cooks: Bayesian inference for coordinating multi-agent collabora-
tion. Topics in Cognitive Science, 13(2):414–432, 2021.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent repre-
sentations to influence multi-agent interaction. In Conference on Robot Learning, pp. 575–588.
PMLR, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Multi-agent collaboration via reward attribution decomposition. arXiv preprint
arXiv:2010.08531, 2020.

13

Published as a conference paper at ICLR 2023

Rui Zhao, Jinming Song, Hu Haifeng, Yang Gao, Yi Wu, Zhongqian Sun, and Yang Wei. Max-
imum entropy population based training for zero-shot human-ai coordination. arXiv preprint
arXiv:2112.11701, 2021.

Zihan Zhou, Wei Fu, Bingliang Zhang, and Yi Wu. Continuously discovering novel strategies via
reward-switching policy optimization. In Deep RL Workshop NeurIPS 2021, 2021. URL https:
//openreview.net/forum?id=2AJtG_ZIV2.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The ingredients of real world robotic reinforcement learning. In Inter-
national Conference on Learning Representations, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

14

https://openreview.net/forum?id=2AJtG_ZIV2
https://openreview.net/forum?id=2AJtG_ZIV2

Published as a conference paper at ICLR 2023

We would suggest visiting https://sites.google.com/view/hsp-iclr for more infor-
mation.

A THEOREM PROOFS

For simplicity, we assume state space and action space in our analysis are both discrete and finite,
which is exactly the case for Overcooked, and the rewards r are bounded: |r(s, a)| ≤ Rmax,∀s ∈
S, a ∈ A.

Lemma 5.1. Given an MDP M = 〈S,A, P,Rt〉, for any policy πw : S × A → [0, 1], there
exists a hidden reward function Rw such that the two-player hidden utility Markov game M ′ =
〈S,A, P,Rw, Rt〉 has a Nash equilibrium (π∗a, π

∗
w) where π∗w = πw.

Proof. Our analysis is based on the maximum entropy reinforcement learning framework (Haarnoja
et al., 2018; Ziebart et al., 2008; Wulfmeier et al., 2015). Given a reward function R and policies
of the two players π1 and π2, we consider following maximum entropy RL objective for policy
πi(1 ≤ i ≤ 2),

Ji(π1, π2|R) = Eτ

[∑
t

γt(R(st, a
(1)
t , a

(2)
t) + αH(πi(·|st)))

∣∣∣a(i)
t ∼ πi(·|st)

]

We shall first constructs πa given policy πw to satisfy J2(πw, πa|Rt) ≥ J2(πw, π
′
a|Rt),∀π′a and

secondly constructs Rw such that J1(πw, πa|Rw) ≥ J1(π′w, πa|Rw),∀π′w is satisfied.

Step 1: Construct πa given πw.

Given πw, let πa ∈ arg maxπ J2(πw, π|Rt).

Step 2: Construct Rw such that J1(πw, πa|Rw) ≥ J1(π′w, πa|Rw),∀π′w is satisfied given πw and
πa.

Given a fixed partner πa, by regarding πa as part of the environment dynamics, we could consider
the dynamics for πw in a single-agent MDP M ′ = 〈S,A, P ′, Rw, γ〉 where S is the state space, A
is the action space, P ′ denotes the transition probability and Rw is the reward function to construct.
More specifically, P ′ is defined as,

P ′(s′|s, a) =
∑
ã

P (s′|s, a, ã) · πa(ã|s) (2)

In M ′, given reward Rw, the objective of πw becomes,

max
π

Eτ

[∑
t

γt(Rw(st, at) + αH(π(st)))
∣∣∣at ∼ π(st)

]
(3)

The value function and the Q function could be defined as,

V (s) = Eτ

[∑
t

γt(Rw(st, at) + αH(πw(st)))
∣∣∣at ∼ πw(st), s0 = s

]
(4)

=
∑
a

πw(a|s)(Rw(s, a) + γEs′ [V (s′)|s, a]) + αH(πw(s)) (5)

Q(s, a) = Rw(s, a) + γ · Es′ [V (s′)|s, a] (6)

It is sufficient to construct Rw such that V (s) is a stable point of the Bellman backup operator (Sut-
ton & Barto, 2018) T ∗ under some Rw:

(T ∗V)(s) = max
d:
∑

a d(a)=1
αH(d) +

∑
a

d(a)(Rw(s, a) + γEs′ [V (s′)|s, a]) (7)

Now we assume V (s) is a stable point for Eq. 7 and construct Rw. For all s ∈ S, πw(·|s) should be
a solution to the following maximization problem,

15

https://sites.google.com/view/hsp-iclr

Published as a conference paper at ICLR 2023

max
d

αH(d) +
∑
a

d(a)Q(s, a) (8)

s.t.
∑
a

d(a) = 1 (9)

Applying KKT conditions over the above optimization problem indicates that,

πw(·|s) ∝ exp(Q(s, ·)/α),∀s (10)

Let π∗w(s) = arg maxa πw(a|s), V ∗(s) = maxaQ(s, a), A(s, a) = Q(s, a) − V ∗(s). By Eq. 10,
we also have

A(s, a) = α(log πw(a|s)− log πw(π∗w(s)|s)) (11)

By definition of value function V (s),

V (s) =
∑
a

πw(a|s)Q(s, a) + αH(πw(s)) (12)

=
∑
a

πw(a|s)(A(s, a) + V ∗(s)) + αH(πw(s)) (13)

=
∑
a

πw(a|s)A(s, a) + V ∗(s) + αH(πw(s)) (14)

=
∑
a

πw(a|s)A(s, a) +Rw(s, π∗w(s)) + γEs′ [V (s′)|s′ ∼ P ′(s, π∗w(s))] + αH(πw(s))

(15)

= Eτ

[∑
t

γt

(∑
a′

πw(a′|s)A(s, a′) +Rw(st, at) + αH(πw(st))

)∣∣∣at = π∗w(st)

]
(16)

Let b(s) = Rw(s, π∗w(s)). Then V (s) is determined given πw and b,

V (s) = Eτ

[∑
t

γt

(∑
a′

πw(a′|s)A(s, a′) + b(st) + αH(πw(st))

)∣∣∣at = π∗w(st)

]
(17)

By A(s, a) = α(log πw(a|s)− log πw(π∗w(s)|s)) = Q(s, a)− V ∗(s),

α(log πw(a|s)− log πw(π∗w(s)|s)) = Rw(s, a) + γEs′ [V (s′)|s′ ∼ P ′(s, a)]− V ∗(s) (18)

Rw(s, a) = α log

(
πw(a|s)

πw(π∗w(s)|s)

)
− γEs′ [V (s′)|s′ ∼ P ′(s, a)] + V ∗(s)

(19)

To summarize, for policy πw, we can construct a valid hidden reward function Rw via following
process,

1. Choose a function b : S ′ → R.

2. Compute A(s, a) by Eq. 11.

3. Compute V (s) and V ∗(s) by Eq. 17.

4. Construct Rw(s, a) by Rw(s, π∗w(s)) = b(s) and Eq. 19.

Now we show that, for any b : S ′ → R, under Rw constructed by the above process, V (s) is a stable
point of the Bellman backup operator T ∗. This is straightforward. First, constructed Rw ensures

16

Published as a conference paper at ICLR 2023

that α(log πw(a|s) − log πw(π∗w(s)|s)) = Q(s, a) − V ∗(s) (Eq. 19) and therefore πw(a|w) ∝
exp(Q(s, a)/α), which means πw is a solution for the maximization problem 8. So

(T ∗V)(s) = max
d

αH(d) +
∑
a

d(a)(Rw(s, a) + γEs′ [V (s′)]) (20)

=
∑
a

πw(a|s)Q(s, a) + αH(πw(s)) = V (s). (21)

Theorem 5.1. For any ε > 0, there exists a mapping π̃w where π̃w(Rw) denotes the derived policy
π∗w in the NE of the hidden utility Markov game Mw = 〈S,A, P,Rw, Rt〉 induced by Rw, and a
distribution PR : R → [0, 1] over the hidden reward space R, such that, for any adaptive policy
πA ∈ arg maxπ′ ERw∼PR

[J(π′, π̃w(Rw))], πA approximately maximizes the ground-truth objective
with at most an ε gap, i.e., EπH∼PH

[J(πA, πH)] ≥ maxπ′ EπH∼PH
[J(π′, πH)]− ε.

Proof. LetK(K > |A|) be a large positive integer. We construct a discretization of the policy space
Π by ΠK = {π : π(a|s) = i

K where i ∈ [K],∀s ∈ S, a ∈ A and
∑
a π(a|s) = 1,∀s ∈ S}. Note

that ΠK is finite, i.e. |ΠK | ≤ (K + 1)
|S|·|A|. Let M = |ΠK | and π1, π2, · · · , πM be an ordering of

the policies in ΠK . For simplicity of notation, let δ = |A|
K .

Given the discretization ΠK , it’s straightforward to specify the nearest policy π̂ ∈ ΠK for any policy
π ∈ Π. Formally, for any policy π ∈ Π, let G(π) = arg mini=1,...,M

∑
s,a |π(a|s) − πi(a|s)|. An

obvious property of G is that, ∀s ∈ S, ||π(·|s)−G(π)(·|s)||∞ ≤ |A|K = δ.

For two policies π1 and π2, consider π1 playing with π2 and G(π2) respectively. Since the action
distribution of π2 and G(π2) at each state differ at most δ, we have follows,

|J(π1, π2)− J(π1, G(π2))| ≤
∑
t

γt · (1− δ)t · δ · 2Rmax

1− γ
≤ 2δRmax

(1− γ)2
(22)

We can then derive a discretized approximation of the ground-truth policy distribution PH as fol-
lows,

P̂H(π) = Prπ′∼PH
[π = G(π′)] (23)

We could show that the difference between the objective under the ground-truth policy distribution
PH and that under the approximated policy distribution P̂H is bounded. By Eq. 22, for any adaptive
policy πA,∣∣EπH∼P̂H

[J(πA, πH)]− EπH∼PH
[J(πA, πH)]

∣∣ =
∣∣EπH∼PH

[J(πA, G(πH))− J(πA, πH)]
∣∣ (24)

≤ 2δRmax

(1− γ)2
(25)

On the other hand, consider following an iterative process to find hidden reward functions for poli-
cies in ΠK . For i = 1..M , we find hidden reward function R(i)

w where R(i)
w /∈ {R(j)

w |1 ≤ j ≤ i− 1}
and R(i)

w could be constructed from πi as in Lemma 5.1. Notice that, by construction rule in Lemma
5.1, such R(i)

w must exists since we can specify arbitrary b : S → R.

Let π̃w(R
(i)
w) = πi,∀i = 1 . . .M and the hidden reward distribution PR be PR(R

(i)
w) =

P̂H(πi),∀i = 1 · · ·M . We immediately see that, for any adaptive policy πA, the objective is equiv-
alent under the approximated policy distribution P̂H and hidden reward function distribution PR,

ERw∼PR
[J(πA, π̃w(Rw))] = EπH∼P̂H

[J(πA, πH)] (26)

Finally, for any adaptive policy πA ∈ arg maxπ′ ERw∼PR
[J(π′, π̃w(Rw))] and any policy π′ ∈ Π,

17

Published as a conference paper at ICLR 2023

EπH∼PH
[J(πA, πH)] ≥ EπH∼P̂H

[J(πA, πH)]− 2δRmax

(1− γ)2
(27)

= ERw∼PR
[J(πA, π̃w(Rw))]− 2δRmax

(1− γ)2
(28)

≥ ERw∼PR
[J(π′, π̃w(Rw))]− 2δRmax

(1− γ)2
(29)

= EπH∼P̂H
[J(π′, πH)]− 2δRmax

(1− γ)2
(30)

≥ EπH∼PH
[J(π′, πH)]− 4δRmax

(1− γ)2
(31)

Let K ≥ 4|A|Rmax

ε(1−γ)2 and we have EπH∼PH
[J(πA, πH)] ≥ maxπ′ EπH∼PH

[J(π′, πH)]− ε.

B ENVIRONMENT DETAILS

Figure 7: All 5 layouts used in our work (from left to right): Asymmetric Advantage, Coordina-
tion Ring, Counter Circuit, Distant Tomato, and Many Orders, each featuring specific cooperation
patterns we want to study.

B.1 DESCRIPTION

The Overcooked Environment, first introduced in (Carroll et al., 2019), is based on the popular video
game Overcooked where multiple players cooperate to finish as many orders as possible within a
time limit. In this simplified version of the original game, two chiefs, each controlled by a player
(either human or AI), work in grid-like layouts. Chiefs can move between non-table tiles and interact
with table tiles by picking up or placing objects. Ingredients (e.g., onions and tomatoes) and empty
dishes can be picked up from the corresponding dispenser tiles and placed on empty table tiles or
into the pots. The typical pipeline for completing an order is (1) players put appropriate ingredients
into a pot; (2) a pot starts cooking automatically once filled and takes a certain amount of time
(depending on the recipe) to finish; (3) a player harvests the cooked soup with an empty dish and
deliver it to the serving area.

The observation for an agent includes the whole layout, items on the counter and pots, player
positions, orders, and time. The possible actions are up, down, left, right, no-op, and "interacting"
with the tile the player is facing. Reward is given to both agents upon successful soup delivery, with
the amount varying with the type of soup. An episode of the game terminates when the time limit is
reached.

The environment used in (Carroll et al., 2019) has only onions as ingredients and onion soups as
orders. In our work, we evaluate all methods in three of them, namely Asymmetric Advantage,
Coordination Ring, and Counter Circuit, each designed to enforce a specific cooperation pattern.

Our work introduces two new layouts: Distant Tomato and Many orders, with new ingredients and
order types to make cooperation more challenging. In Distant Tomato, a dish of onion soup takes
20 ticks to finish and gives 20 rewards when delivered, while a tomato soup takes 10 ticks and gives
the same reward but needs more movements to get the ingredient. The two players need to agree
on which type of soup to cook in order to reach a high score. Failure in cooperation may result
in tomato-onion soups that give no reward. In many orders, there are three types of orders: onion,

18

Published as a conference paper at ICLR 2023

tomato, and 1-onion-2-tomato. To fully utilize the three pots, the players need to work seamlessly
in filling not just the pots near each of them but also the pot in the middle.

We show all the layouts in Fig.7. and conclude the cooperation pattern of our interest as follows.

• Asymmetric Advantage tests whether the players can choose a strategy to their strengths.
• Coordination Ring requires the players not to block each other when traveling between the

two corners.
• Counter Circuit embeds a non-trivial but efficient strategy of passing onions through the

middle counter, which needs close cooperation.
• Distant Tomato and Many Orders both encourage the players to reach an agreement on the

fly in order to achieve a high reward.

B.2 EVENTS

In Overcooked, we consider the following events for random search in HSP and reward shaping
during training of all methods:

• putting an onion/tomato/dish/soup on the counter,
• picking up an onion/tomato/dish/soup from the counter,
• picking up an onion from the onion dispenser,
• picking up a tomato from tomato dispenser,
• picking up a dish from the dish dispenser,
• picking up a ready soup from the pot with a dish,
• placing an onion/tomato into the pot,
• valid placement: after the placement, we can finish an order with a positive reward by

placing other ingredients,
• optimal placement: the placement is optimal if the maximum order reward we can achieve

for this particular pot is not decreased after the placement,
• catastrophic placement: the placement is catastrophic if the maximum order reward we can

achieve for this particular pot decreases from positive to zero after the placement,
• useless placement: the placement is useless if the maximum order reward we can achieve

for this particular pot is already zero before the placement,
• useful dish pickup: picking up a dish is useful when there are no dishes on the counter, and

the number of dishes already taken by players is less than the total number of unready and
ready soups,

• delivering a soup to the serving area.

Additionally, in Distant Tomato, we consider the following events only for reward shaping,

• placing a tomato into an empty pot,
• optimal tomato placement: the placement is optimal and a tomato placement,
• useful tomato pickup: the agent picks up a tomato when the partner isn’t holding a tomato,

and there is a pot that is not full but only has tomatoes in it.

C OVERCOOKED VERSION

In our experiments, we use two versions of Overcooked for a fair comparison with prior works and
introduce challenging layouts. One version, in which we tested Asymmetric Advantages, Coordina-
tion Ring and Counter Circuit, is consistent with the "neurips2019" branch in the released GitHub
repository of (Carroll et al., 2019). We remark that MEP (Zhao et al., 2021) also follows this ver-
sion. Following this also allows us to perform an evaluation with human proxy models provided
in the released code of (Carroll et al., 2019). The other version is an up-to-date version of Over-
cooked, which supports tomatoes and user-defined orders. We notice that a pot automatically starts
cooking soup once there are three items in it in the former version, while it requires an additional
"interact" action to start cooking in the latter version. This additional "interact" is required in the
latter version since it supports orders with different amounts of ingredients. However, having an
additional "interact" significantly influences a human player’s interactive experience. Therefore, we
make modifications on the latter version to restrict orders to 3 items and support auto-cooking when
there are 3 items. For more details, please refer to the released code.

19

Published as a conference paper at ICLR 2023

D IMPLEMENTATION DETAILS

D.1 HSP

Algorithm 3: Hidden-Utility Self-Play
for i = 1→ N do

Train π(i)
w and π(i)

a under sampled R(i)
w ;

end
Run greedy policy selection to only keep K policies;
Initial policy πA;
repeat

Rollout with πA and sampled π(i)
w ;

Update πA;
until enough iterations;

The pseudocode of HSP is shown in Algo. 3. We implemented HSP on top of MAPPO (Yu et al.,
2021). Following the standard practice, we use multiprocessing to collect trajectories in parallel
and then update the models. In the first stage, we use MLP policies, which empirically yield better
results. In the second stage, we use RNN policies so that the adaptive policy could infer the inten-
tion of its partner by observing the history of its partner and make decisions accordingly for better
adaptation. As suggested in(Tang et al., 2020), we add the identities of the policies in the policy
pool as an additional feature to the critic. For better utilization of the computation resources, each
environment sub-process loads a uniformly sampled policy and performs inference on CPUs, while
the inference of the adaptive policy is batched across sub-processes in a GPU.

D.2 BASELINES

For a fair comparison, we implement all baselines to be two-staged and train layout-specific agents.

We remark that our implementation of MEP achieves substantially higher scores than reported in
the original paper (Zhao et al., 2021) when evaluated with the same human proxy models as MEP.
All baselines are implemented with techniques stated above: loading policies from the pool per sub-
process and the additional feature of identities of policies in the policy pool. We detail the baselines
here and point out the difference with the original papers,

FCP(Strouse et al., 2021): We list the differences between our implementation and the original
FCP as follows,

1. The original FCP uses image-based egocentric observations, while we use feature-based
observations as provided in Overcooked.

2. The original FCP uses a pool size of 96 while we use 36. We empirically found 36 a
sufficiently large pool size in our experiments. As shown in Table 21, in the three layouts
that have human proxy models, there is no significant difference between using a pool size
of 36 and of 72.

MEP(Zhao et al., 2021): We list the differences between our implementation and the original MEP
as follows,

1. While the released code of MEP uses MLP policy in the second training stage, we found
RNN policy to work better. Intuitively, for better cooperation, the adaptive policy should
infer the intention of its partner by observing the state-action history.

2. MEP uses a pool size of 15 while we use 36.
3. MEP uses prioritized sampling in the second stage, which favors weak policies in the pool,

while we adopt uniform sampling for MEP since we found prioritized sampling not helpful
with our carefully tuned implementation (shown in Table 5).

4. In the released code of MEP, the policy updates are performed on data against only one
policy from the pool, while we perform policy updates on data against many policies from
the pool. This avoids the update from being biased towards some specific policies.

TrajDiv(Lupu et al., 2021): While the original TrajDiv is tested in hand-crafted MDPs and Hanabi,
we test TrajDiv in Overcooked. Although (Lupu et al., 2021) suggests training the adaptive policy
and the policy pool together in a single stage, we choose to follow MEP and FCP to have a two-
staged design that trains the adaptive policy in the second stage.

20

Published as a conference paper at ICLR 2023

Pos. Asy. Adv. Coor. Ring Coun. Circ.

Uniform Sampling 1 291.7(4.6) 161.8(0.7) 108.8(4.2)

2 203.4(2.0) 164.2(2.1) 111.1(0.7)

Prioritized Sampling 1 284.6(3.2) 161.2(1.4) 94.4(2.3)

2 218.8(2.4) 167(4.5) 99.8(1.8)

Table 5: Average episode reward and standard deviation (over 5 seeds) with different sampling
methods of MEP. The "1" and "2" indicates the roles played by AI policies.

Biased Scripted

Asymm. Adv. 0.56 0.85
Coord. Ring 0.59 0.72
Counter Circ. 0.56 0.73
Dist. Tomato 0.70 1.90
Many Orders 0.55 1.00

Table 6: The average event-based difference of biased and scripted policies respectively.

D.3 SCRIPTED POLICIES

To evaluate all methods with policies that have strong preferences, we consider the following
scripted policies,

• Onion/Tomato/Dish Everywhere continuously tries to put onions, tomatoes or dishes over
the counter.

• Onion/Tomato Placement always tries to put onion or tomato into the pot.

• Delivery delivers a ready soup to the serving area whenever possible.

• Onion/Tomato Placement and Delivery puts tomatoes/onions into the pot in half of the time
and tries to deliver soup in the other half of the time.

For Counter Circuit, we additionally consider a scripted policy, named Onion to Middle Counter,
which keeps putting onions randomly over the counter in the middle of the layout.

Input to these scripted policies is the ground-truth state of the game, which is accessible via the
game simulator. When a scripted policy is unable to finish the event of its interest at some state, the
scripted policy would walk to a random empty grid. For example, Onion Placement would choose a
random walk when all pots are full. We ensure that these scripted policies are strictly different from
policies in the policy pool of HSP. For more details, please refer to the released code.

We also provide evidence to show scripted policies are sufficiently different from those in the train-
ing pool. We use the expected event count of scripted and biased policies to support our claim. Recall
that expected event count for a pair of policy πa, πb is EC(πa, πb) = E[

∑T
t=1 φ(st, at)|πa, πb]. Let

πHSP be the HSP adaptive policy, {π(n)
w }n∈[N] be the set of biased policies in the training pool, and

{π(m)
s }m∈M be the set of scripted policies. For convenience, let Π = {π(n)

w }n∈[N] ∪ {π
(m)
s }m∈M

be the union of biased policies and scripted policies. For each policy π′ ∈ Π, we measure how
close it is to the rest of policies in Π in the expected event count, i.e. the event-based difference
EventDiffΠ(π′) = minπ′′∈Π\{π′}

∑
k ck · |ECk(π′, πHSP) − ECk(π′′, πHSP)| where ck is a fre-

quency normalization constant. Then a large event-based difference indicates that π′ is sufficiently
different from other policies in Π. We calculate the event-based difference for all biased and scripted
policies. Table. 6 reports the average event-based difference between biased and scripted policies,
respectively. Scripted policies consistently have a larger average event-based difference, indicating
scripted policies are sufficiently different from biased policies, which are used for training the HSP
adaptive policy.

21

Published as a conference paper at ICLR 2023

E TRAINING DETAILS

E.1 HYPERPARAMETERS

HSP and baselines are all two-staged solutions by first constructing a policy pool and then training
an adaptive policy πA to maximize the game reward w.r.t. the induced pool.

The network architecture in both two stages is composed of 3 convolution layers with max pooling.
Hyperparameters of these layers are listed in Table 7. Each layer is followed by a max pooling layer
with a kernel size of 2. For MLP policies, we add two linear layers after the convolution. For RNN
policies, we add a 1-layer GRU after the convolution and two linear layers after the GRU layer. The
hidden sizes for these linear layers and the GRU layer are all 64. We use ReLU as the activation
function between layers and LayerNorm after GRU and linear layers except the last one. The output
is a 6-dim vector denoting the categorical action distribution.

Common hyperparameters for all methods in 5 layouts are listed in Table 8 and Table 9. Specifically,
for MEP, we use the suggested hyperparameters from the original paper (Zhao et al., 2021). Detailed
hyperparameters of MEP are shown in Table 10, where population entropy coef. adjusts the impor-
tance of the population entropy term. Detailed hyperparameters of TrajDiv are shown in Table 11,
where traj. gamma is the discounting factor used in local action kernel and diversity coef. adjusts
the importance of the diversity term. For each one of MEP, FCP and TrajDiv, we train 12 policies
in the first stage and, following the convention of MEP (Zhao et al., 2021) and FCP (Strouse et al.,
2021), take the init/middle/final checkpoints for each policy to build up the policy pool, leading to
a pool size of 36. For HSP, we use a random search to first train 36 biased policies and then filter
out 18 biased policies from them. We then combine these biased policies and past checkpoints of 6
policies in the policy pool of MEP to build up the policy pool of HSP, again leading to a pool size
of 36.

Layer Out Channels Kernel Size Stride Padding

1 32 3 1 1
2 64 3 1 1
3 32 3 1 1

Table 7: CNN feature extractor hyperparameters.

common hyperparameters value

entropy coef. 0.01
gradient clip norm 10.0

GAE lambda 0.95
gamma 0.99

value loss huber loss
huber delta 10.0

mini batch size batch size / mini-batch
optimizer Adam

optimizer epsilon 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

learning rate 5e-4
parallel environment threads 100

ppo epoch 15
environment steps 10M

episode length 400
reward shaping horizon 100M

Table 8: Common hyperparameters in the first stage.

22

Published as a conference paper at ICLR 2023

E.2 CONSTRUCTING THE POLICY POOL FOR HSP

To construct the policy pool for HSP, we perform a random search over possible hidden reward
functions. Each reward function is formulated as a linear function over the event-based features,
i.e. R = {Rw : Rw(s, a1, a2) = φ(s, a1, a2)Tw, ||w||∞ ≤ Cmax} where φ : S × A × A → Rm
specifies occurrences of different events when taking joint action (a1, a2) at state s. To perform
random search, instead of directly sampling each wj from the section [−Cmax, Cmax], we sample
each wj from a set of possible values Cj . We detail the Cj for each event on each layout here.
Tab. 12 shows Cj in Asymmetric Advantages, Coordination Ring and Counter Circuit. Tab. 13 and
Tab. 14 show Cj in Distant Tomato and Many Orders respectively. A detailed description of the
events is shown in Sec. B.2. Note that in addition to events, we also include order reward as one
element in a random search.

To filter out duplicated policies, we define an event-based diversity for a subset S, i.e. ED(S) =∑
i,j∈S

∑
k ck · |EC(i)

k − EC(j)
k | where ECik is the expected number of occurrences of event type k

for biased policy π(i)
w . The coefficient ck balances the importance of different kinds of events. We

simply set ck as a normalization constant, i.e. ck =
(

maxi∈[N] EC(i)
k

)−1

.

common hyperparameters value

entropy coef. 0.01
gradient clip norm 10.0

GAE lambda 0.95
gamma 0.99

value loss huber loss
huber delta 10.0

mini batch size batch size / mini-batch
optimizer Adam

optimizer epsilon 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

learning rate 5e-4
parallel environment threads 300

ppo epoch 15
environment steps 100M

episode length 400
reward shaping horizon 100M

policy pool size 36

Table 9: Common hyperparameters in the second stage.

hyperparameters value

population entropy coef. 0.01

Table 10: MEP hyperparameters in the first stage.

hyperparameters value

traj. gamma 0.5
diversity coef. 0.1

Table 11: TrajDiv hyperparameters in the first stage.

23

Published as a conference paper at ICLR 2023

Event Cj

Picking up an onion from onion dispenser -10, 0, 10
Picking up a dish from dish dispenser 0, 10
Picking up a ready soup from the pot -10, 0, 10

Placing an onion into the pot -10, 0, 10
Delivery -10, 0

Order reward 0, 1

Table 12: Cj for random search in Asymmetric Advantages, Coordination Ring and Counter Circuit.

Event Cj

Picking up an onion from onion dispenser -5, 0, 5
Picking up a tomato from tomato dispenser 0, 10, 20

Picking up a dish from dish dispenser 0, 10
Picking up a soup -5, 0, 5
Viable placement -10, 0, 10

Optimal placement -10, 0, 10
Catastrophic placement 0, 10

Placing an onion into the pot -10, 0, 10
Placing a tomato into the pot -10, 0, 10

Delivery -10, 0
Order reward 0, 1

Table 13: Cj for random search in Distant Tomato.

E.3 REWARD SHAPING

We use reward shaping during training in all layouts, detailed as follows,

• In the first stage, the reward shaping for Asymmetric Advantages, Coordination Ring and
Counter Circuit is shown in Table. 15 and that for Distant Tomato and Many Orders is
shown in Table. 17. Note that we do not use reward shaping when training biased policies
for HSP in the first stage.

• In the second stage, the reward shaping for Asymmetric Advantages, Coordination Ring
and Counter Circuit is shown in Table. 16. Reward shaping for Many Orders is shown in
Table. 18 and that for Distant Tomato is shown in Table. 19. The factor of shaped reward
anneals from 1 to 0 during the whole course of training in all layouts except Distant Tomato,
in which the factor anneals from 1 to 0.5.

F FULL RESULTS

F.1 COOPERATION WITH LEARNED HUMAN MODELS

Table 20 shows average episode reward and standard deviation (over 5 seeds) on 3 layouts for dif-
ferent methods played with human proxy policies. All values within 5 standard deviations of the
maximum episode return are marked in bold. These three simple layouts may not fully reflect
the performance gap between the baselines and HSP. The results with learned human models are
reported for a fair comparison with existing SOTA methods. Besides, our implementation of the
baselines achieves substantially better results than their original papers with the same human proxy
models, making the improvement margin look smaller. We also remark that the learned human mod-
els have limited representation power to imitate natural human behaviors that typically cover many
behavior modalities. Here we give empirical evidence of the learned human models failing to fully
reflect human behaviors.

F.1.1 EMPIRICAL EVIDENCE

The original Overcooked paper (Carroll et al., 2019) collected human-play trajectories. We then
collect game trajectories played by the learned human models and compare them with human-play

24

Published as a conference paper at ICLR 2023

Event Cj

Picking up an onion from onion dispenser -5, 0, 5
Picking up a tomato from tomato dispenser 0, 10, 20

Picking up a dish from dish dispenser 0, 5
Picking up a soup -5, 0, 5
Viable placement -10, 0, 10

Optimal placement -10, 0
Catastrophic placement 0, 10

Placing an onion into the pot -3, 0, 3
Placing a tomato into the pot -3, 0, 3

Delivery -10, 0
Order reward 0, 1

Table 14: Cj for random search in Many Orders.

Event Value

Optimal placement 3
Picking up a dish from dish dispenser 3
Picking up a ready soup from the pot 5

Table 15: Reward shaping for Asymmetric Advantages, Coordination Ring and Counter Circuit in
the first stage.

(a) Asymmetric Advantages (b) Coordination Ring (c) Counter Circuit

Figure 8: Trajectories induced by the learned human models and human players in Asymmetric
Advantages, Coordination Ring and Counter Circuit. Each point or triangle denotes a trajectory with
the X-axis coordinate being the self-cooking ratio, which is the ratio of onions the player places in
the pot to the total amount of placements in the trajectory, and the Y-axis coordinate being the self-
delivery ratio, which is the ratio of deliveries given by the player to the total number of deliveries in
the trajectory. Triangles and points denote trajectories induced by human players and learned human
models, respectively. Different colors stand for different player indices. "BC" represents the learned
human models, and "Human" denotes human players. Clearly, trajectories induced by the learned
human models can not fully cover those by human players.

trajectories by measuring self-delivery ratio, i.e., the ratio of deliveries by the specific player to the
total delivery number in a trajectory, and self-cooking ratio, which is the ratio of onions that the
player places in the pot to the total pot placement number in a trajectory. The distributions of these
trajectories are demonstrated in Fig. 8. From the figure, we can observe that the learned human
models can not fully cover human behaviors. This suggests that evaluation results with the learned
human models can not provide a comprehensive comparison among different methods.

25

Published as a conference paper at ICLR 2023

Event Value

Optimal placement 3
Picking up a dish from dish dispenser 3
Picking up a ready soup from the pot 5

Table 16: Reward shaping for Asymmetric Advantages, Coordination Ring and Counter Circuit in
the second stage.

Event Value

Picking up a dish from dish dispenser 3
Picking up a ready soup from the pot 5

Table 17: Reward shaping for Distant Tomato and Many Orders in the first stage.

F.2 ABLATION STUDIES

F.2.1 POOL SIZE

Table 21 shows the average episode reward on 3 layouts with different sizes of the final policy pool
for training the adaptive policy. Since increasing the pool size to 72 gives little improvement as
suggested by the result, we use 36 in our experiments for computation efficiency.

F.2.2 POLICY POOL CONSTRUCTION

HSP has two techniques for the policy pool, i.e., (1) policy filtering to remove duplicated biased
policies and (2) the use of MEP policies under the game reward for half of the pool size. We measure
the performance with human proxies by turning these options off. For “HSP w.o. Filtering”, we keep
all the policies by random search in the policy pool, which results in a larger pool size of 54 (18 MEP
policies and a total of 36 random search ones). For“HSP w.o. MEP”, we exclude MEP policies in
the policy pool and keep all the biased policies without filtering, which leads to the same pool size
of 36. The results are shown in Table. 22.

F.3 COOPERATION WITH SCRIPTED POLICIES WITH STRONG BEHAVIOR PREFERENCES

Table 23 illustrates average episode reward and standard deviation (over 5 seeds) in all layouts with
scripted policies. All values within a difference of 5 from the maximum value are marked in bold.

F.4 HUMAN-AI EXPERIMENT

F.4.1 EXPERIMENT SETTING

We recruited 60 volunteers by posting the experiment advertisement on a public platform. They
are provided with a detailed introduction to the basic gameplay and the experiment process. The
Overcooked game was deployed remotely on a server that the volunteers could access with their
browsers. According to the feedback, over 90 percent of volunteers had no prior experience with
Overcooked. We uniformly divided 60 volunteers into 5 groups assigned to each of the 5 layouts.
We designed the experiment to last around 30 minutes for each volunteer to ensure the validity
of the data. Due to availabilities of volunteers, experiments are conducted within two consecutive
days. The experiment has two stages. In the first stage, which is called the warm-up stage, the
participants are encouraged to explore the behaviors of 4 given AI agents without a time limit. After
the first stage, they are required to comment on their game experience, e.g., whether the AI agents
are cooperative and comfortable to play with, and rank the agents accordingly. In the second stage,
each participant is instructed to achieve scores as high as they could in 24 games (4 AI agents × 2
player positions × 3 repeats).

We remark that, on the environment side, different from human-AI experiments performed by prior
works (Zhao et al., 2021; Carroll et al., 2019) in Overcooked, we slow down the AI agents so that
the AI agents have similar speed with human players. More specifically, 7 idle steps are inserted
before each step of the AI agent. Such an operation is necessary since, in our prior user studies,
we find that human players commonly feel uncomfortable if the AI agent is much faster and human
players could contribute little to the score.

26

Published as a conference paper at ICLR 2023

Event Value

Picking up a dish from the dish dispenser 3
Picking up a ready soup from the pot 5

Table 18: Reward shaping for Many Orders in the second stage.

Event Value

Picking up a dish from the dish dispenser 3
Picking up a ready soup from the pot 5

Useful tomato pickup 10
Optimal tomato placement 5

Placing a tomato into an empty pot -15

Table 19: Reward shaping for Distant Tomato in the second stage.

F.4.2 HUMAN FEEDBACK

We collected and analyzed the feedback from the participants to see how they felt playing with AI
agents. Here we summarize the typical reflections.

1. In Coordination Ring, the most annoying thing reported is players blocking each other
during movement. To effectively maneuver in the ring-like layout, players must reach a
temporary agreement on either going clockwise or counterclockwise. HSP is the only AI
able to make way for the other player, while others can not recover by themselves once
stuck. For example, both FCP and TrajDiv players tend to take a plate and wait next
to the pot immediately after one pot is filled. But they can neither take a detour when
blocked on their way to the dish dispenser nor yield their position to the human player
trying to pass through. The video recorded in the human study can be found in Part 4.2 of
https://sites.google.com/view/hsp-iclr.

2. In Counter Circuit, one efficient strategy is passing onion via the counter in the middle
of the room: a player at the bottom fetches onions and places them on the counter, while
another player at the top picks up the onions and puts them into pots. HSP is the only AI
player capable of this strategy in both top and bottom places and performs the highest onion
passing frequency cooperating with human players as shown in Figure. 6b.

3. In Distant Tomato, one critical thing is that mixed (onion-tomato) soups give no reward,
which means two players need to agree on the soup to cook. All AI agents perform well
when the other player focuses on onion soups. However, all AI agents except for HSP fail
to deal with tomato-preferring partners as shown in Table. 3. FCP, MEP, or TrajDiv agents
never actively choose to place tomatoes and keep placing onions even when a pot has
tomatoes in it, resulting in invalid orders. On the contrary, HSP chooses to place tomatoes
when there are tomatoes in the pot. Participants commonly agree that the HSP agent is
the best partner to play with in this layout. The video recorded in the human study can be
found in Part 4.2 of https://sites.google.com/view/hsp-iclr.

4. In Many Orders, most participants claim that HSP is able to pick up soups from all three
pots, while other AI agents only concentrate on the pot in front of them and ignore the
middle pot even if the human player attempts to use it. Table. 4 shows that HSP agent
picks up most soups from the middle pot and meanwhile gets the highest average episode
reward.

F.4.3 HUMAN PREFERENCE ON DIFFERENT AI AGENTS

Figure. 9 illustrates human preference for different AI agents. In all layouts except a relatively
restricted and simple layout, Coordination Ring, human players strongly prefer HSP over other AI
agents. In Coordination Ring, though human players rank MEP above HSP, HSP is still significantly
better than FCP and TrajDiv.

Calculation Method: Human preference for different methods is computed as follows. Assume we
are comparing human preference between method A and method B. Let N be the total number of
human players attending the experiments in one layout, NA be the number of human players who

27

https://sites.google.com/view/hsp-iclr
https://sites.google.com/view/hsp-iclr

Published as a conference paper at ICLR 2023

rank A over B, and NB be the number of those who rank B over A. "Human preference for method
A over method B" is computed as NA

N −
NB

N .

(a) Asy. Adv. (b) Coor. Ring (c) Coun. Circ. (d) Dis. Toma. (e) Many Ord.

Figure 9: Human preference for row partner over column partner in all layouts.

F.4.4 SCORES IN THE SECOND STAGE

Table 24 shows average reward per episode during the second stage in all layouts. All methods have
comparable episode rewards in Asymm. Adv and Coord. Ring. There is no room for improvement
since all the methods have reached the highest possible rewards. In Counter Circ., the most complex
layout in this category, HSP achieves a better performance than baselines: HSP has a 155+ reward
while the most competitive baseline MEP has a reward of 134+. We remark that the reward differ-
ence between HSP and MEP is around 20, which is exactly the value of 1 onion soup delivery. This
implies that the HSP agent can, on average, deliver one more soup than all the baselines per game
episode with humans, which is a significant improvement.

28

Published as a conference paper at ICLR 2023

Pos. Asy. Adv. Coor. R. Coun. Circ.

FCP 1 282.8(9.4) 161.3(1.6) 95.9(2.0)

2 203.8(8.2) 161.0(2.7) 92.7(1.3)

MEP 1 291.7(4.6) 161.8(0.7) 108.8(4.2)

2 203.4(2.0) 164.2(2.1) 111.1(0.7)

TrajDiv 1 289.3(8.8) 150.8(3.1) 60.1(5.0)

2 194.2(0.7) 142.1(2.3) 53.7(12.4)

HSP 1 300.3(2.2) 160.0(2.6) 107.4(3.5)

2 217.1(3.3) 160.6(3.3) 106.6(3.0)

Table 20: Average episode reward and standard deviation (over 5 seeds) on 3 layouts for different
methods played with human proxy policies. All values within 5 standard deviations of the maximum
episode return are marked in bold. The Pos. column indicates the roles played by AI policies.

Pos. Asy. Adv. Coor. R. Coun. Circ. Asy. Adv. Coor. R. Coun. Circ.
policy pool size = 36 policy pool size = 72

FCP 1 282.8(9.4) 161.3(1.6) 95.9(2.0) 278.3(16.0) 158.9(0.6) 91.9(7.5)

2 203.8(8.2) 161.0(2.7) 92.7(1.3) 200.9(13.2) 156.9(4.7) 90.7(4.8)

MEP 1 291.7(4.6) 161.8(0.7) 108.8(4.2) 298.2(5.4) 157.3(2.7) 104.6(5.0)

2 203.4(2.0) 164.2(2.1) 111.1(0.7) 207.8(7.3) 158.9(3.0) 105.0(2.2)

TrajDiv 1 289.3(8.8) 150.8(3.1) 60.1(5.0) 270.8(2.5) 142.5(2.8) 70.1(6.7)

2 194.2(0.7) 142.1(2.3) 53.7(12.4) 192.8(8.7) 137.3(4.9) 63.8(8.2)

Table 21: Average episode reward and standard deviation (over 5 seeds) on 3 layouts for different
methods played with human proxy policies. The Pos. column indicates the roles played by AI
policies.

Pos. Asy. Adv. Coor. R. Cou. Circ.

HSP w.o. MEP (pool size = 36) 1 308.5(4.4) 157.5(3.0) 94.0(2.7)

2 219.6(15.9) 157.7(2.5) 100.4(1.1)

HSP w.o. Filtering (pool size = 54) 1 311.3(8.1) 139.2(5.6) 80.1(4.6)

2 209.3(4.0) 138.5(3.1) 88.7(0.9)

HSP (pool size = 36) 1 300.3(2.2) 160.0(2.6) 107.4(3.5)

2 217.1(3.3) 160.6(3.3) 106.6(3.0)

Table 22: Average episode reward and standard deviation (over 5 seeds) on 3 layouts for different
methods played with human proxy policies. The Pos. column indicates the roles played by AI
policies.

29

Published as a conference paper at ICLR 2023

Sc
ri

pt
s

FC
P

M
E

P
Tr

aj
D

iv
H

SP
1

2
1

2
1

2
1

2

A
sy

.A
dv

.
O

ni
.P

la
.

30
4.

0(
20

.8
)

36
5.

7(
5.

3)
29

5.
0(

25
.7

)
36

5.
9(

2.
8)

29
6.

5(
25

.2
)

35
0.

7(
8.

9)
35

7.
3(

2.
4)

39
6.

3(
17

.4
)

O
ni

.P
la

.&
D

el
i.

36
4.

9(
2.

9)
23

0.
5(

3.
9)

36
6.

8(
1.

5)
23

0.
3(

5.
3)

35
8.

2(
6.

0)
22

1.
8(

3.
4)

37
1.

4(
3.

3)
22

9.
9(

4.
9)

C
oo

r.
R

in
g

O
ni

.E
ve

ry
.

10
6.

0(
8.

7)
11

2.
1(

7.
2)

12
4.

6(
3.

6)
12

3.
4(

3.
2)

11
5.

7(
11

.1
)

11
8.

1(
6.

7)
12

0.
8(

14
.3

)
12

1.
7(

10
.9

)

D
is

h
E

ve
ry

.
91

.9
(4

.1
)

97
.0

(3
.4

)
10

1.
4(

3.
1)

99
.0

(7
.3

)
10

7.
5(

5.
2)

10
7.

1(
5.

3)
11

4.
9(

7.
7)

11
6.

0(
7.

2)

C
ou

n.
C

ir
c.

O
ni

.E
ve

ry
.

64
.8

0(
8.

8)
62

.7
(9

.5
)

90
.6

(3
.9

)
87

.4
(6

.2
)

86
.0

(1
2.

1)
78

.1
(1

3.
4)

11
0.

5(
3.

7)
10

4.
4(

3.
4)

D
is

h
E

ve
ry

.
57

.9
(5

.3
)

56
.1

(5
.2

)
53

.5
(1

.1
)

52
.5

(2
.4

)
59

.3
(2

.9
)

55
.0

(1
.5

)
79

.3
(3

.5
)

77
.8

(4
.7

)

O
ni

.2
M

id
.C

ou
.

73
.0

(1
1.

5)
72

.4
(1

2.
6)

11
2.

1(
6.

5)
11

0.
7(

5.
8)

10
9.

5(
5.

6)
10

7.
9(

5.
5)

14
9.

3(
3.

1)
14

7.
1(

3.
2)

D
is

.T
om

a.
To

m
a.

Pl
a.

13
.5

(2
.6

)
17

.8
(7

.6
)

25
.9

(1
7.

6)
14

.3
(3

.6
)

29
.6

(1
4.

1)
17

.2
(4

.8
)

27
7.

7(
9.

7)
27

8.
9(

18
.8

)

To
m

a.
Pl

a.
&

D
el

i.
19

7.
5(

4.
9)

15
8.

3(
7.

3)
18

5.
9(

9.
9)

17
4.

8(
7.

4)
17

5.
3(

21
.6

)
15

4.
3(

17
.6

)
23

7.
2(

8.
2)

23
1.

9(
22

.0
)

M
an

y
O

rd
.

To
m

a.
Pl

a.
28

5.
4(

19
.5

)
27

9.
8(

12
.8

)
22

4.
1(

61
.2

)
22

7.
6(

60
.5

)
26

3.
8(

10
.1

)
25

4.
6(

5.
7)

31
5.

7(
12

.1
)

31
9.

9(
6.

5)

To
m

a.
Pl

a.
&

D
el

i.
33

4.
1(

5.
6)

32
4.

2(
4.

9)
32

9.
1(

12
.7

)
32

7.
2(

12
.4

)
29

8.
8(

3.
2)

29
2.

6(
1.

5)
32

6.
7(

4.
0)

32
2.

3(
3.

9)

Ta
bl

e
23

:
A

ve
ra

ge
ep

is
od

e
re

w
ar

d
an

d
st

an
da

rd
de

vi
at

io
n

(o
ve

r
5

se
ed

s)
in

al
l

la
yo

ut
s

w
ith

sc
ri

pt
ed

po
lic

ie
s.

A
ll

va
lu

es
w

ith
in

W
ith

in
a

di
ff

er
en

ce
of

5
fr

om
m

ax
im

um
re

w
ar

d
ar

e
m

ar
ke

d
in

bo
ld

.T
he

"1
"

an
d

"2
"

in
di

ca
te

s
th

e
ro

le
s

pl
ay

ed
by

A
Ip

ol
ic

ie
s.

30

Published as a conference paper at ICLR 2023

Pos. Asy. Adv. Coor. Ring Cou. Circ. Dis. Toma. Many Ord.

FCP 1 339.3(38.17) 185.0(19.73) 127.7(28.14) 351.3(82.25) 312.4(58.73)

2 321.3(34.80) 180.7(22.98) 118.3(29.20) 320.5(66.49) 321.3(61.12)

MEP 1 329.7(45.97) 193.3(22.11) 136.9(27.00) 341.9 (65.07) 322.0(50.53)

2 324.2(39.93) 183.6(26.75) 134.5(28.63) 313.9(78.29) 319.2(52.98)

TrajDiv 1 329.0(43.18) 184.7(28.60) 112.6(25.78) 327.1(71.04) 312.9(62.82)

2 318.8(48.97) 176.8(31.33) 105.0(31.05) 316.0(77.65) 334.2(57.99)

HSP 1 336.0(35.55) 185.5(38.92) 158.0(28.56) 331.6(61.33) 384.3(47.50)

2 318.8(48.97) 188.9(22.00) 155.2(23.43) 305.9(58.61) 380.7(62.27)

Table 24: Average reward per episode in all layouts with human players in the second stage.

31

	1 Introduction
	2 Related Work
	3 Preliminary
	4 Cooperating with Humans in Overcooked: A Motivating Example
	5 Methodology
	5.1 Hidden-Utility Markov Game
	5.2 Construct a Policy Pool of Diverse Preferences
	5.3 Hidden-Utility Self-Play

	6 Experiments
	6.1 Cooperation with Learned Human Models in Onion-Only Layouts
	6.2 Ablation Studies
	6.3 Cooperation with Scripted Policies with Strong Behavior Preferences
	6.4 Cooperation with Human Participants
	6.4.1 Results of the Warm-up Stage
	6.4.2 Results of the Exploitation Stage

	7 Conclusion
	A Theorem Proofs
	B Environment Details
	B.1 Description
	B.2 Events

	C Overcooked Version
	D Implementation Details
	D.1 HSP
	D.2 Baselines
	D.3 Scripted Policies

	E Training Details
	E.1 Hyperparameters
	E.2 Constructing the Policy Pool for HSP
	E.3 Reward Shaping

	F Full Results
	F.1 Cooperation with Learned Human Models
	F.1.1 Empirical Evidence

	F.2 Ablation Studies
	F.2.1 Pool Size
	F.2.2 Policy Pool Construction

	F.3 Cooperation with Scripted Policies with Strong Behavior Preferences
	F.4 Human-AI Experiment
	F.4.1 Experiment Setting
	F.4.2 Human Feedback
	F.4.3 Human Preference on Different AI Agents
	F.4.4 Scores in the Second Stage

