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Abstract

Completely randomized experiment is the gold standard for causal inference. When the
covariate information for each experimental candidate is available, one typical way is to include
them in covariate adjustments for more accurate treatment effect estimation. In this paper,
we investigate this problem under the randomization-based framework, i.e., that the covariates
and potential outcomes of all experimental candidates are assumed as deterministic quanti-
ties and the randomness comes solely from the treatment assignment mechanism. Under this
framework, to achieve asymptotically valid inference, existing estimators usually require either
(i) that the dimension of covariates p grows at a rate no faster than O(n2/3) as sample size
n → ∞; or (ii) certain sparsity constraints on the linear representations of potential outcomes
constructed via possibly high-dimensional covariates. In this paper, we consider the moder-
ately high-dimensional regime where p is allowed to be in the same order of magnitude as n.
We develop a novel debiased estimator with a corresponding inference procedure and establish
its asymptotic normality under mild assumptions. Our estimator is model-free and does not
require any sparsity constraint on potential outcome’s linear representations. We also discuss
its asymptotic efficiency improvements over the unadjusted treatment effect estimator under
different dimensionality constraints. Numerical analysis confirms that compared to other re-
gression adjustment based treatment effect estimators, our debiased estimator performs well in
moderately high dimensions.

Keywords: randomization-based inference, causal inference, regression adjustment, high-dimensional
statistics

1 Introduction

Since the seminal work of Fisher [1935], completely randomized experiment has been the gold
standard for causal inference. By using only the randomization in treatment assignments as the
reasoned basis, completely randomized experiments can provide a valid inference of treatment ef-
fects without any model or distributional assumptions on the experimental candidates, such as
being i.i.d. sampled from some superpopulation or some other model assumption that may be un-
verifiable in practice. Such inference is often called randomization-based or design-based inference,
sometimes also called finite-population-based inference to emphasize its focus on just candidates in
the experiment. Evaluating causal effects under this inferential framework has been an active area
of research in the past few years [e.g. Lin, 2013, Bloniarz et al., 2016, Li et al., 2018, Lei and Ding,
2021, Wang and Li, 2022], which is also the framework we focus on in this paper.
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When the covariate information of each experimental candidate is available, it is often popular
to use regression adjustment in the analysis stage to utilize the additional covariate information to
improve estimation precision [Lin, 2013, Bloniarz et al., 2016, Negi and Wooldridge, 2021, Lei and
Ding, 2021]. Lin [2013] showed that in completely randomized experiments, regression adjustment
can improve the asymptotic efficiency of average treatment effect estimation when the dimension
of covariates p is fixed as the sample size n goes to infinity. However, in modern experiments,
researchers can collect a large number of covariates. It is important to develop methodology and
theory for high-dimensional settings where p → ∞ as the sample size goes to infinity.

In the high-dimensional regime where p ≫ n, the LASSO-adjusted estimator [Bloniarz et al.,
2016] has been proposed to estimate causal effect with high accuracy. However, it is under the
requirement that the potential outcomes can be well represented by a sparse linear function of the
high-dimensional covariates, which can be unrealistic in practice. In the lower dimensional regime,
Lei and Ding [2021] improved Lin’s method by debiasing and guaranteed improvement of estimation
efficiency compared to the difference in means estimator when p = O(n2/3/(log n)1/3), without any
assumption on the sparsity of potential outcome’s linear representations. However, when p grows
faster than that rate, the theory for Lei’s estimator is not applicable anymore. In practice, we have
also found that Lei’s estimator may not achieve the desired performance when p is relatively large,
as we will show later in the numerical analysis section of this paper.

In this paper, we consider themoderately high-dimensional regime where p is allowed to be in the
same order of magnitude as n. We develop a novel debiased estimator with a corresponding inference
procedure and establish its asymptotic normality and inference validity. Our estimator guarantees
improvement of estimation efficiency over the unadjusted estimator in the regime p = o(n). In the
higher dimensional regime where p can be in the same order of magnitude as n, we prove that if the
empirical correlation between potential outcomes and covariates is sufficiently large relative to p/n,
we can guarantee efficiency improvement compared to the simple difference in means estimator that
estimates causal effect without any adjustment on the collected covariates. Noteworthy, our theory
for asymptotic normality and inference validity is based on some standard regularity conditions on
potential outcomes and their empirical regression residuals, beyond that, no assumption is required
on the observed covariate features. This allows us to provide valid inferences even with heavy-tailed
covariates.

Before moving forward, it would be convenient to introduce some notations that will be used in
the rest of this paper. Given n d-dimensional samples a1, . . . ,an of a variable a, we let ā denote
its empirical average, and let S2

a := 1
n−1

∑n
i=1(ai− ā)(ai− ā)⊤ be the empirical covariance matrix

of a. Given n samples of two variables a and b, we write Sa,b := 1
n−1

∑n
i=1(ai − ā)(bi − b̄)⊤ as its

empirical covariance matrix. Analogously, given a matrix A ∈ Rn×n, we define the scaled variance
of variable a, S2

A,a and scaled covariance of variables a and b as

S2
A,a :=

1

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(aj − ā)⊤

SA,a,b :=
1

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(bj − b̄)⊤.

Apparently, S2
a = S2

I,a, where I is the identity matrix. Given a sequences of random variables Un,

we use Un
·∼ N (0, 1) to denote that it converges in distribution to a standard normal distribution.

We write H ∈ Rn×n as the hat matrix where Hij := (n− 1)−1(Xi − X̄)⊤S−2
X (Xj − X̄).
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1.1 Framework, literature review and overview of contributions

We consider an experiment with n experimental units and two arms z ∈ {0, 1}. We restrict
the experiment to be a completely randomized experiment where the experimenter selects n1 units
uniformly at random to the treatment group, and the rest n0 units to the control group. To describe
causality, we adopt the potential outcome framework, where for each experimental candidate i,
we assume there are two potential outcomes Yi(1) and Yi(0), where Yi(z) denotes the potential
outcome of unit i had unit i been assigned to group z. Then the observed outcome Yi satisfies
Yi = ZiYi(1) + (1 − Zi)Yi(0), where the random variable Zi ∈ {0, 1} denotes the treatment arm
assigned to unit i.

In this paper, we consider the randomization-based framework where all the potential outcomes
(Yi(1), Yi(0)) are considered deterministic and the randomness comes only from the randomness in
the treatment assignment mechanism. This regime has a long history in the study of randomized
experiments [Imbens and Rubin, 2015]. Under this regime, our target of interest then becomes
estimating the sample average treatment effect:

τ̄ :=
1

n

n∑
i=1

τi where τi = Yi(1)− Yi(0).

According to the finite-population central limit theorem [Hájek, 1960], one can prove that under
some standard regularity conditions, as n goes to infinity, the simple difference in mean estimator
τ̂unadj :=

1
n1

∑n
i=1 ZiYi − 1

n0

∑n
i=1(1 − Zi)Yi is guaranteed to provide asymptotically normal and

unbiased estimation of τ̄ . Specifically, writing rz := nz/n as the proportion of units in treatment
arm z, we have

√
n(τ̂unadj − τ̄)/σcre

·∼ N (0, 1) where σ2
cre := r−1

1 S2
Y (1) + r−1

0 S2
Y (0) − S2

τ .

When each experimental unit i has a deterministic covariate information Xi of dimension p indi-
cating its properties, such as age, education, and body weights, a typical choice is to use regression
adjustment to incorporate these information for more efficient treatment effect estimation. By
defining β̃z := S−1

X SX,Y (z), and β̂z as an empirical estimate of β̃z using samples in the treat-
ment arm z, Lin [2013] showed that in the regime where p is assumed as a fixed constant, the
regression-adjusted estimator:

τ̂adj :=
1

n1

n∑
i=1

Zi{Yi − β̂
⊤
1 (Xi − X̄)} − 1

n0
(1− Zi){Yi − β̂

⊤
0 (Xi − X̄)} (1)

has the representation

τ̂adj − τ̄ =
1

n

n∑
i=1

Zi(r
−1
1 ei(1) + r−1

0 ei(0)) + oP(1/
√
n), (2)

where
ei(z) := Yi(z)− Ȳ (z)− β̃

⊤
z (Xi − X̄) (3)

corresponds to the regression residual of Yi(z). Thus, from standard results in finite population
central limit theorem (see e.g. Li and Ding [2017] and the references therein), it has the asymptotic
distribution

√
n(τ̂adj − τ̄)/σadj

·∼ N (0, 1) where σ2
adj := r−1

1 S2
e(1) + r−1

0 S2
e(0) − S2

τe ,
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where τe,i := ei(1)− ei(0) corresponds to the individual difference of the residuals in two treatment
arms. As an extension, Lei and Ding [2021] showed that in the regime p = o(

√
n), the above

conclusion still holds. Moreover, they proposed a debiased estimator which is asymptotically normal
in the regime p = O(n2/3/(log n)1/3).

In this paper, we develop a new regression adjustment-based ATE estimator in the higher
dimensional regime where p is allowed to be in the same order of magnitude as n. Under this
regime, a major challenge is that the inverse covariance matrix used in the construction of β̂z is
based on the Xi’s in treatment arm z, which is hard to analyze with large p. Because of this,
in this paper, we instead consider a variant of regression adjustment estimator where the inverse
covariance matrix is instead constructed using covariate information on the entire dataset, i.e. that
we instead set β̂z := S−2

X sX,Y (z)
1, where sX,Y (z) denotes an empirical estimate of SX,Y (z) using

samples from treatment arm z, and set τ̂adj as in (1) but with the new β̂z. In other words, compared
to the definition at Lin [2013], Lei and Ding [2021], the main difference is that we use the Xi’s
of the entire sample to construct the inverse covariance matrix, not only those in treatment arm
z. Such a variant has been discussed before by Li and Ding [2020], Wang and Li [2022] in the
lower dimensional regime. Building on this variant of regression adjustment-based estimator, we
propose a new debiased estimator for average treatment effect estimation; we prove that in an
asymptotic regime where p = o(n), the debiased estimator is asymptotically normal with the same
variance as in the fixed dimensional regime, namely σ2

adj. We also derive the asymptotic distribution
of the debiased estimator in the higher-dimensional regime where p can be in the same order of
magnitude as n and propose sufficient conditions so that the debiased estimator is asymptotically
more efficient than the unadjusted estimator. As far as we are aware, both regimes have not been
well investigated by existing randomization-based framework literature.

Finally, we would like to remark that besides the randomization-based framework we consider
in this manuscript, another choice is the superpopulation framework, which assumes that the
experimental units must be randomly sampled from some superpopulation. This framework is also
popular in literature, some examples include Tsiatis et al. [2008], Wager et al. [2016], Negi and
Wooldridge [2021].

The rest of this paper is organized as follows. In Section 2, we present our new estimator, and
prove its asymptotic normality in the regime p = o(n). In Section 3, we prove its asymptotic con-
vergence in the higher dimensional regime where p is allowed to be in the same order of magnitude
as n and discuss conditions so that it is asymptotically more efficient than without regression ad-
justment. In Section 4, we present a new confidence interval construction method. In Section 5, we
discuss the regularity conditions involved in Sections 2–4. We further conduct a numerical analysis
in Section 6. We end with a concluding remark in Section 7.

2 A debiased regression adjustment estimator

In this section, we discuss how our debiased estimator is constructed, and present its asymptotic
property in the regime p = o(n). As will be demonstrated in the Supplementary Material, under
some regularity conditions that will be discussed further later in this section, there exists some ci

1From here and below, we assume throughout that p < n, so that the regression adjustment estimator is well
defined.
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and cij depending only on the pre-treatment variables such that the following decomposition holds:

τ̂adj − τ̄ =− r1r0
n

n∑
i=1

Hii

(
Yi(1)− Ȳ (1)

r21
− Yi(0)− Ȳ (0)

r20

)
(4)

+
1

n

n∑
i=1

(Zi − r1)ci +
1

n

∑
i ̸=j

(Zi − r1)(Zj − r1)cij + oP(1/
√
n),

where the form of ci and cij will be demonstrated in the Supplementary Material. Apparently, the
second term is of mean zero. For the third term, since the Zi’s are just weakly dependent, one
can also show that its mean is approximately zero. Therefore, the first term constitutes the bias.
Based on this, we propose a new debiased ATE estimator via stripping the original τ̂adj with an
approximately unbiased estimator of the first term, which is constructed based on the observations
in the two treatment arms:

τ̂db := τ̂adj + r1r0

 1

n1

∑
i:Zi=1

Hii
(Yi − Ȳ1)

r21
− 1

n0

∑
i:Zi=0

Hii
(Yi − Ȳ0)

r21

 , (5)

where different from Ȳ (z), Ȳz is the estimated mean using the outcome data in treatment arm z.
Below we provide an asymptotic convergence guarantee of τ̂db in the asymptotic regime p = o(n).
Our new guarantee is based on the following 4 assumptions:

Assumption 1. For z = 0, 1, rz tends to a limit in (0, 1).

Assumption 2. For z = 0, 1,
∑n

i=1

(
Yi(z)− Ȳ (z)

)2
= O(n).

Assumption 3. Consider the ei(z) in (3), as n → ∞,

max
z

max
i

|Yi(z)− Ȳ (z)|/
√
n → 0 & max

z
max

i
|ei(z)|/

√
n → 0.

Assumption 4. lim infn→∞ σ2
adj > 0.

Assumptions 1, 2 and 4 are standard assumptions in randomization-based inference. Assump-
tion 3 is a Lindeberg–Feller-type condition to guarantee that the representation in (2) has an
approximately normal distribution in the large sample limit; similar condition has also appeared in
previous regression adjustment literature; see e.g. Lei and Ding [2021] and the references therein.

With these assumptions, we are able to show that τ̂db has the representation

τ̂db − τ̄ =
1

n

n∑
i=1

Zi(r
−1
1 ei(1) + r−1

0 ei(0)) +
1

n

n∑
i=1

Zi(r
−1
1 si(1) + r−1

0 si(0)) (6)

− 1

n

∑
i ̸=j

(Zi − r1)(Zj − r1)

(
Aij(1)

r21
− Aij(0)

r20

)
+ oP(1/

√
n),

where recall that ei(z) are defined as in Assumption 3,

si(z) := Hii(Yi(z)− Ȳ (z))− 1

n

n∑
i=1

Hii(Yi(z)− Ȳ (z)),
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and Aij(z) is the (i, j)-th entry of the matrix

A(z) := H diag
{
(Y1(z)− Ȳ (z), . . . , Yn(z)− Ȳ (z))⊤

}
.

We now invoke the following condition on the ordered sequence of potential outcomes, which
characterizes the tail of the population of potential outcomes:

Assumption 5. As n → ∞, p/n → 0. Moreover, let (Y(1)(z)− Ȳ (z))2 ≥ . . . ≥ (Y(n)(z)− Ȳ (z))2 be
the ordered sequence of {(Yi(z)− Ȳ (z))2}ni=1. Then, for any z ∈ {0, 1}, we have that

∑p
i=1(Y(i)(z)−

Ȳ (z))2 = o(n).

Armed with the above 5 assumptions, we are able to show that the second and third terms in
the decomposition (6) are of order oP(1/

√
n), so that τ̂db has the same asymptotic representation

(and therefore the same asymptotic distribution) as τ̂adj in the fixed p case. Specifically, we have
the following result:

Theorem 1. Under Assumptions 1–5, we have

n1/2 (τ̂db − τ) /σadj
·∼ N (0, 1).

As discussed before, Assumptions 1–4 are basic assumptions in previous literature; Assumption 5
is a novel contribution from us. In other words, our estimator requires no further assumption on the
moment of covariate Xi or the leverage scores Hii to obtain asymptotically normal convergence.
As we will show later in Section 5, Assumption 5 holds with high probability when Yi(z) are i.i.d.
generated from a superpopulation with bounded second order moment.

In the next section, we further consider the regime where p can be in the same order of magnitude
as n. Under this regime, the second and third terms in the decomposition (6) are not necessarily
negligible anymore, so we need new analysis to understand their asymptotic convergence. The
second term is easy to deal with. The main obstacle of the analysis is that the quadratic form
of centered treatment indicators (i.e., the third term in (6)) needs to be characterized by a new
analytic tool, which is the central limit theorem of quadratic forms. We will discuss this further in
the next section.

3 Asymptotic convergence of debiased estimator with moderately
high-dimensional covariates

In this section, we consider the asymptotic convergence of our debiased estimator in the moderate
high-dimensional regime where we allow p to be in the same order of magnitude as n. As mentioned
before, since in this regime, the second and third terms in the decomposition (6) are not negligible,
we need to derive their (joint) distribution in the large sample limit. With the help of standard
results in combinatorial central limit theorem (CLT) [Hájek, 1960], the second term is easy to
derive. Whilst for the third term, due to the quadratic functions in the form (Zi − r1)(Zj − r1),
standard combinatorial CLT is not applicable to understand its convergence anymore.

In this paper, we will use the newly developed central limit theorem of the so-called homogeneous
sums from Koike [2022] to characterize the third term of (6). Specifically, Koike [2022] studied the
convergence of random variables satisfying the following form:

6



Definition 1. Let W = (Wi)
n
i=1 be a sequence of independent centered random variables with unit

variance. A homogeneous sum is a random variable of the form

Q(f ;W ) =
n∑

i1,...,ip=1

f (i1, . . . , iq)Wi1 · · ·Wiq ,

where n, q ∈ N, [n] := {1, . . . , n} and f : [n]q → R is a symmetric function vanishing on diagonals,
i.e., f (i1, . . . , iq) = 0 unless i1, . . . , iq are mutually different.

This is an extension of the linear statistics studied by the standard CLT. Apparently, by setting
Wi ≡ (Zi − r1)/(r1r0)

1/2, q = 2 and

f(i1, i2) ≡ r1r0
(
r−2
1 Ai1i2(1) + r−2

1 Ai2i1(1)− r−2
0 Ai1i2(0)− r−2

0 Ai2i1(0)
)
/(2n),

the third term in (6) falls into this category, with the exception that in our problem, the (Zi− r1)’s
are weakly dependent.

Below we give a brief literature review of this class of CLT. Rotar’ [1976] and Rotar et al. [1979]
studied the invariance principles of Q(f ;W ) regarding the law of W . De Jong [1990] established
the univariate central limit theorem for Q(f ;W ). Koike [2022] extended it to the multivariate
case and obtained the bound for the error of normal approximation. The special case of q = 1 is
the classic sum of independent random variables. The special case of q = 2 has been extensively
studied; see, for example, De Wet and Venter [1973], de Jong [1987], Fox and Taqqu [1987]. Note
that all of the results are for independent Wi’s.

Nevertheless, the results of Koike [2022] are still not sufficient, since Koike [2022] assumed that
all the random variables are independent, whilst in our problem, the Zi’s are weakly dependent
due to simple random sampling. Mimicking the idea of Hàjek’s coupling [Hájek, 1960] and its
extension in Wang and Li [2022], we are able to propose a new combinatorial central limit theorem
to characterize the joint distribution of the decomposition in (4), and furthermore, the asymptotic
distribution of τ̂db − τ̄ .

To formally describe the new convergence result, we first define

σ2
hd,l := r−1

1 S2
e(1)+s(1) + r−1

0 S2
e(0)+s(0) − S2

τe+τs ,

where analogous to τe, we write τs,i := si(1)− si(0). Moreover, we define

σ2
hd,q := (r1r0)

2S2
Q, r−2

1 Y (1)−r−2
0 Y (0)

,

where Q is an n×n dimensional matrix such that Qij := H2
ij whenever i ̸= j and Qii := Hii −H2

ii.

Apparently, σ2
hd,l and σ2

hd,q correspond to the variances contributed by the linear statistic and

quadratic statistic in (6), respectively. We also write σ2
hd := σ2

hd,l + σ2
hd,q as their total variance.

We now invoke the following assumption regarding the asymptotics of our estimator variance.

Assumption 6. lim infn→∞ σ2
hd,l > 0 or lim infn→∞ σ2

hd,q > 0.

Armed with this assumption, we are able to show that our debiased estimator is asymptotically
normal.

Theorem 2. If Assumptions 1–3, 6 hold, we have as n → ∞,

n1/2 (τ̂db − τ) /σhd
·∼ N (0, 1).

7



Notice that in the above theorem, we do not require any assumption on the scaling of p; instead,
we just require p < n so that the debiased estimator is well-defined. Of course, as we will discuss
later, we may still need p/n to be asymptotically bounded below by some constant in (0, 1) to
justify some assumptions. For more discussions, we refer the readers to Section 5.

Interestingly, without the constraint p = o(n), we do not need Assumption 5 anymore. This is
because we characterize more carefully the distribution of τ̂db by considering the second and third
terms in the decomposition (6).

3.1 Efficiency improvement for debiased regression adjustment with moder-
ately high-dimensional covariates

In Theorem 2, we present the asymptotic distribution of our new debiased estimator. In this section,
we discuss conditions so that σ2

hd,l + σ2
hd,q is smaller than σ2

cre, i.e., that our debiased estimator is
asymptotically more efficient than without doing regression adjustment at all.

To shed light on how the covariate-dimension-to-sample-size-ratio p/n influences the variance of
our new estimator, we consider a class of pre-treatment covariates whose leverage scores concentrate
around their mean p/n. We formalize it into the following assumption.

Assumption 7. Let α := p/n. As n → ∞, we have that:

max
1≤i≤n

|Hii − α| → 0 & max
z∈{0,1}

max
1≤i≤n

|Yi(z)− Ȳ (z)|/
√
n → 0,

or for some constant η > 0,

1

n

n∑
i=1

(Hii − α)2 → 0 & max
z∈{0,1}

1

n

n∑
i=1

|Yi(z)− Ȳ (z)|2+η → 0.

In Lei and Ding [2021], the authors have also assumed similar assumptions. Specifically, they
require maxi |Hii| = o(1), which is equivalent to our first constraint in the regime α → 0. To justify
this assumption, they proved that this assumption holds with high probability when the covariates
are randomly generated from a superpopulation with (6 + δ)-th moment. This proof, albeit being
enough for the setting p = o(n), cannot be used in the p ≍ n regime. As we will discuss further
in Section 5, in this paper, we provide a new proof to show that if the covariates are generated
as i.i.d. realizations of a random variable with (4 + δ)-th moment, Assumption 7 holds with high
probability.

Armed with the new assumption, we are able to propose some bounds on σhd,l and σhd,q,

depending on α. By defining R2 := 1 − σ2
adj

σ2
cre

, which is equivalent to the empirical correlation

between X and r−1
1 Y (1) + r−1

0 Y (0), we have the following result:

Corollary 1. Under Assumptions 1, 2 and 7, as n → ∞, we have

σ2
hd,l =

[
(1 + α)2 − (1 + 2α)R2

]
σ2
cre + o(1),

0 ≤ σ2
hd,q ≤ 2(r1r0)

2α(1− α)S2
r−2
1 Y (1)−r−2

0 Y (0)
+ o(1).

As a consequence, there is

o(1) ≤ σ2
hd −

[
(1 + α)2 − (1 + 2α)R2

]
σ2
cre ≤ 2(r1r0)

2α(1− α)S2
r−2
1 Y (1)−r−2

0 Y (0)
+ o(1).
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Figure 1: Curves of R2
L as a function of α := p/n with different magnitudes of γ := S2

τ

2S2
Y (1)+Y (0)

2

.

The dashed line signifies 1.

Informally then, Corollary 1 shows that a necessary condition for the debiased estimator to give
a variance smaller than that of τ̂unadj is

(1 + α)2 − (1 + 2α)R2 − 1 < 0 ⇔ R2 >
α2 + 2α

1 + 2α
. (7)

At the same time, a sufficient condition for the debiased estimator to give a variance reduction is

R2 >
α2 + 2α

1 + 2α
+ 2r1r0

α(1− α)

1 + 2α

S2
r−2
1 Y (1)−r−2

0 Y (0)

S2
r−1
1 Y (1)+r−1

0 Y (0)

. (8)

When r1 ≡ r0 ≡ 1
2 , then the above inequality can be written as

R2 >
α2 + 2α

1 + 2α
+

α(1− α)

1 + 2α

S2
τ

2S2
Y (1)+Y (0)

2︸ ︷︷ ︸
=:R2

L

.

We denote the right-hand side of the above inequality by R2
L. Informally, the magnitude of R2

L

depends on two quantities: the first is the covariate-dimension-to-sample size ratio α; the second
is a scaled ratio between the variance of individual treatment effect τi := Yi(1) − Yi(0) and the

variance of the average of two potential outcomes Yi(1)+Yi(0)
2 , which we denote by γ := S2

τ

2S2
Y (1)+Y (0)

2

.

Figure 1 illustrates the dependency of R2
L on α and γ. Apparently, with a decreasing γ, R2

L

decreases monotonically. This indicates that when the individual effects have smaller heterogeneity,
less dependency between the potential outcomes and covariates is required for the debiased esti-
mator to have an efficiency improvement compared to the unadjusted estimator. When γ is small,

9



R2
L increases monotonically as α goes from 0 to 1. When γ is increased to above 2, the trend then

follows a different pattern. Regardless of the magnitude of γ, R2
L reduces to zero as α goes to zero.

This is consistent with the theoretical findings in the low-dimensional setting. When α approaches
1, both R2

L and the lower bound in (7) approaches 1. This implies that we usually cannot achieve
any efficiency improvement when p is close to n. This also implies that adding more covariates to
the regression will usually result in a phase transition from “mostly harmless” to “harmful” to the
post-experiment analysis. In practice, we recommend practitioners to choose a moderate number
of covariates so that R2 is above R2

L.

When α is small, say 0.1, and we restrict γ to be no larger than 2, R2
L is at most 0.325. We

believe this already includes a large number of cases in practical applications; when α = 0.5, one
may require a relatively low γ to keep R2

L away from 1. Of course, since R2 > R2
L is just a sufficient

condition for our estimator to be more accurate than without using regression adjustment at all,
in practice one may still observe an improved accuracy even when this is violated.

4 Inference

Inference on τ̂db relies on a valid estimation of σ2
hd, so that one can construct asymptotically valid

Wald-type confidence intervals. We will derive the formula of the variance estimator in this section
and show that this variance estimator is asymptotically valid with moderately high-dimensional
covariates.

Our new inferential technique is constructed by a decomposition of σ2
hd, which is given below

in (13). In order to describe this decomposition, we define:

B := M⊤M , where M :=

(
I − 1

n
11⊤

)
−H +

(
I − 1

n
11⊤

)
diag{H}, (9)

where with a slight abuse of notation, we take diag{H} as a diagonal matrix with (i, i)-th entry
equal to Hii. As will be demonstrated in the Supplementary Material, with the above notation, we
are able to rewrite σhd as

σ2
hd = (r1r0)S

2
B, r−1

1 Y (1)+r−1
0 Y (0)

+ (r1r0)
2S2

Q, r−2
1 Y (1)−r−2

0 Y (0)
. (10)

Now, using that for any symmetric matrix A and any vectors a, b,

SA,a,b = Sdiag{A},a,b + Sdiag−{A},a,b, (11)

where diag−{A} corresponds to the matrix with all diagonal entries equal to zero and all off-diagonal
entries equal to the off-diagonal entries of A, and

S2
A,a+b = S2

A,a + S2
A,b + 2SA,a,b, (12)

10



(which we will clarify in the Supplementary Material), we further decompose σ2
hd as

σ2
hd := (r1r0)

∑
z∈{0,1}

(
S2
r1r0 diag{Q}, r−2

z Y (z)
+ S2

r−2
z diag{B}, Y (z)

)
︸ ︷︷ ︸

=:I1

+ (r1r0)
∑

z∈{0,1}

(
S2
r1r0 diag

−{Q}, r−2
z Y (z)

+ S2
r−2
z diag−{B}, Y (z)

)
︸ ︷︷ ︸

=:I2

+ 2Sdiag{B},Y (1),Y (0) − 2Sdiag{Q},Y (1),Y (0)︸ ︷︷ ︸
=:I3

+ 2Sdiag−{B},Y (1),Y (0) − 2Sdiag−{Q},Y (1),Y (0)︸ ︷︷ ︸
=:I4

.

(13)

Informally, I1 and I2 correspond to the variances of a single world, and I3 and I4 correspond to
the covariance of counterfactual worlds.

Armed with the above decomposition, we construct an estimation of σ2
hd by estimating I1, . . . , I4

separately. Since they represent variances from different sources, we need different estimation strate-
gies for each term. We first consider I1 and I2. Since these quantities are quadratic functions of
potential outcomes of a single arm, they can be consistently estimated using empirical observations
from a single arm. Specifically, we can estimate I1 via

Î1 := (r1r0)
∑

z∈{0,1}

(
s2
r1r0 diag{Q}, r−2

z Y (z)
+ s2

r−2
z diag{B}, Y (z)

)
,

where s2
r1r0 diag{Q}, r−2

z Y (z)
and s2

r−2
z diag{B}, Y (z)

are empirical estimates of their oracle versions using

samples from treatment arm z. For example, we write

s2
r1r0 diag{Q}, r−2

z Y (z)
:=

1

nz

∑
i:Zi=z

r1r0Qii(r
−2
z Yi − r−2

z Ȳz)
2.

We now consider Î2. Since it involves cross-sample products, we define s2
r1r0 diag

−{Q}, r−2
z Y (z)

instead
as

s2
r1r0 diag

−{Q}, r−2
z Y (z)

:=
1

rznz

∑
i ̸=j:Zi,Zj=z

r1r0Qij(r
−2
z Yi − r−2

z Ȳz)(r
−2
z Yj − r−2

z Ȳz)

and similarly for s2
r−2
z diag−{B}, Y (z)

.

Finally, we discuss the estimation of I3 and I4. Since I3 corresponds to the covariances of
potential outcomes from two worlds, it cannot be estimated consistently from observed data directly.
Instead, it is only identifiable up to an upper bound. As we will show in the proof of Theorem 3,
I3 can be decomposed as

I3 =
∑

z∈{0,1}

(
S2
diag{B},Y (z) − S2

diag{Q},Y (z) − S2
diag−{H},Y (z)

)
+ 2Sdiag−{H},Y (1),Y (0)

− S2
diag{H},Y (1)−Y (0) − S2

e(1)−e(0) +O(n−1),

11



where the last two terms (S2
diag{H},Y (1)−Y (0) and S2

e(1)−e(0)) represent treatment effect variation
and thus can not be estimated consistently. Fortunately, the last two terms are non-negative; this
allows us to provide a consistent estimation of an upper bound of I3 just with the first two terms
in the above decomposition, which we denote by I3,ub. Noteworthy, besides the variance of a single
world, the I3,ub involves a term representing the covariance of counterfactual worlds. We define its
empirical estimate as

sdiag−{H},Y (1),Y (0) :=
1

nr1r0

∑
i ̸=j:Zi=1,Zj=0

Hij(Yi − Ȳ1)(Yj − Ȳ0)

and similarly we can define sdiag−{B},Y (1),Y (0) and sdiag−{Q},Y (1),Y (0). Therefore, we have an empir-
ical estimate of I3,ub as

Î3,ub =
∑

z∈{0,1}

(
s2diag{B},Y (z) − s2diag{Q},Y (z) − s2

diag−{H},Y (z)

)
+ 2sdiag−{H},Y (1),Y (0).

For I4, mimicking the estimates for I3, we propose to estimate it via

Î4 = 2
(
sdiag−{B},Y (1),Y (0) − sdiag−{Q},Y (1),Y (0)

)
.

Putting together, we get the variance estimator σ̂2
hd := Î1+ Î2+ Î3,ub+ Î4. The following theorem

characterizes the asymptotic convergence of this estimator.

Theorem 3. If Assumptions 1–3 and 5 hold, we have

σ̂2
hd = σ2

adj + S2
e(1)−e(0) + oP(1).

Otherwise, if Assumptions 1–3 hold, we have

σ̂2
hd = σ2

hd + S2
e(1)−e(0) + S2

diag{H},Y (1)−Y (0) + oP(1).

Due to the unidentifiability of the counterfactual covariance, the estimated σ̂2
hd contains a

variance inflation. In the regime p = o(n), our variance estimation has the same inflation as in
the lower dimensional regime where p = O(n2/3/(log n)1/3), see Lei and Ding [2021]. This variance
inflation is always no greater than the usual inflation without any covariate adjustment, namely
S2
τ . Nevertheless, in the regime p ≍ n, the variance inflation S2

e(1)−e(0) + S2
diag{H},Y (1)−Y (0) is not

always smaller than S2
τ , especially when there is strong co-linearity between Hii and τi. We will

demonstrate this in numerical analysis. On the other hand, as we will show in Section 5, when the
data exhibit sufficient linearity and light tail, one can still expect S2

e(1)−e(0)+S2
diag{H},Y (1)−Y (0) < S2

τ .

We now showcase an alternative variance estimator with variance inflation equal to S2
τ . In this

estimator, instead of estimating I3,ub, we focus on the following alternative upper bound of I3:

I ′
3,ub :=

∑
z∈{0,1}

(
S2
diag{B},Y (z) − S2

diag{Q},Y (z)

)
,

which can be estimated via

Î ′
3,ub :=

∑
z∈{0,1}

(
s2diag{B},Y (z) − s2diag{Q},Y (z)

)
.

Armed with Î ′
3,ub, we define the alternative variance estimator as (σ̂′

hd)
2 := Î1+ Î2+ Î ′

3,ub+ Î4. The
following corollary characterizes the asymptotic convergence of the alternative variance estimator.

12



Corollary 2. If Assumptions 1–3 and 5 hold, we have

(σ̂′
hd)

2 = σ2
adj + S2

τ + oP(1).

Otherwise, if Assumptions 1–3 hold, we have

(σ̂′
hd)

2 = σ2
hd + S2

τ + oP(1).

In practice, we recommend the use of min{σ̂2
hd, (σ̂

′
hd)

2} for a shorter confidence interval. Then,
no matter S2

e(1)−e(0) + S2
diag{H},Y (1)−Y (0) > S2

τ or not, the variance inflation is always no greater

than S2
τ , i.e., the inflation without using any covariate adjustment. Therefore, the confidence

interval length from our inferential procedure is always asymptotically shorter than the unadjusted
estimator whenever σhd < σcre. In practice, we recommend constructing confidence intervals using
both our procedure and the unadjusted estimator and choosing the shorter one for downstream
analysis.

Since the inferential procedure of Lin [2013] may behave poorly in practice when the covariate
dimension is relatively large, existing literature recommended to use HC3-type standard error
to boost finite sample performance which heavily penalizes dimension p used by the analysis.
However, the HC3-type standard error is typically conservative and has no theoretical guarantee in
the moderately high-dimensional regime. Based on our theory, we provide an inference procedure
that is valid under this regime and the estimated variance is “tight” in that the bias is the variance
of unit-level treatment effect which can not be estimated from data.

5 Justification of assumptions

In this section, we justify Assumptions 5–7. The following proposition implies that Assumption 5
holds with high probability if the potential outcomes are i.i.d. generated from a superpopulation
with bounded variance.

Proposition 1. Fix z ∈ {0, 1}. If p = o(n) and {Yi(z)}ni=1 are i.i.d. random variables with
var(Y1(z)) < ∞, then there exists a positive sequence cn → 0 such that

P

(
1

n

p∑
i=1

(
Y(i)(z)− Ȳ (z)

)2
> cn

)
→ 0.

We now focus on the justification of Assumption 7. The assumptions on Yi(z)’s are common
in randomization-based literature; therefore, we only need to justify the assumptions on H. Since
max1≤i≤n |Hii−α| → 0 is a sufficient assumption for

∑n
i=1(Hii−α)2/n → 0, we only need to show

that the former condition holds with high probability under some superpopulation assumption on
Xi’s. In Proposition 2, we show that when Xi’s are i.i.d. realizations from some superpopulation
with entry-wise bounded (4+η)-th order moment up to some transformation, max1≤i≤n |Hii−α| → 0
holds with high probability.

Proposition 2. Suppose that {Xi}ni=1 are i.i.d. random vectors generated from independent ran-
dom variables as Xi = OV i, where O is a deterministic non-singular matrix and V i have inde-
pendent entries with mean 0, variance 1, and maxj E|V1(j)|4+η < C for some constants η, C > 0;
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suppose also lim supn→∞ α = lim supn→∞(p/n) < 1. Then, for any constant δ satisfying that
0 < δ < η

8+2η ,

P
(
max

i
|Hii − α| > n−δ

)
→ 0. (14)

Finally, we turn to Assumption 6. In fact, it can be justified by simply applying Corollary 1.
Specifically, under Assumptions 1, 2 and 7, we have lim infn→∞ σ2

hd,l > 0 when either (i) Assump-

tion 4 holds or (ii) lim infn→∞ σ2
cre > 0 and lim infn→∞(p/n) > 0. These requirements are natural

in randomization-based literature.
Finally, we investigate the relationship between S2

τ and S2
diag{H},Y (1)−Y (0) + S2

e(1)−e(0) under

a superpopulation framework where (Yi(1), Yi(0),Xi, εi(1), εi(0)) are i.i.d. generated from some
distribution. We assume a linear model where Xi, εi(1), εi(0) are independent and µz, z ∈ {0, 1},
are deterministic scalars:

Yi(1) = µ1 +X⊤
i β1 + εi(1), Yi(0) = µ0 +X⊤

i β0 + εi(0). (15)

Proposition 3 shows that under this superpopulation framework, the confidence interval given by
σ̂2
hd is asymptotically no larger than the confidence interval from (σ̂′

hd)
2 with high probability.

Proposition 3. Under model (15), for z ∈ {0, 1}, we assume that E|ε1(z)|4 < C and E|X⊤
1 βz|4 <

C for some constant C > 0, and Xi satisfies the conditions in Proposition 2. Then, there exists a
positive sequence cn → 0 such that

P
(
S2
τ − S2

e(1)−e(0) − S2
diag{H},Y (1)−Y (0) > −cn

)
→ 0.

6 Numerical analysis

In this section, we conduct a numerical analysis to examine the finite sample performance of our
debiased estimator and its corresponding inference procedure, together with several competitors.

6.1 Experimental setup

Pre-treatment variable generation Let Scale() be a standardization function: for a finite pop-

ulation {ai}ni=1 with a = (a1, . . . , an), Scale(ai) := (ai − ā)/
(∑n

i=1(ai − ā)2/n
)1/2

and Scale(a) =
(Scale(a1), . . . ,Scale(an)). Set n = 1000 and r1 = 0.35. We first generate a matrix X ∈ Rn×n and
two vectors, β ∈ Rn and ∆ ∈ Rn, with i.i.d. entries from t distribution with 3 degrees of freedom.
We keep X , β and ∆ fixed throughout the simulation. For each covariate-dimension-to-sample-
size-ratio α, let X = (X1, . . . ,Xn)

⊤ be the first p := αn columns of X . We generate the potential
outcomes according to the following model

Yi(1) = µ1 + Scale(X⊤
i β1) + εi(1)/

√
γ; Yi(0) = µ0 + Scale(X⊤

i β0) + εi(0)/
√
γ.

Here µz (z ∈ {0, 1}) are generated i.i.d. from t distribution with 3 degrees of freedom. For any
vector a, let a[p] be the subvector of the first p elements; the coefficients β1 and β0 are generated
by

β1 = β[p] + δ∆[p], β0 = β[p] − δ∆[p].

The factor δ is introduced to control the heterogeneity of individual-level treatment effect.
For the noise terms, γ is the scaling factor for the magnitude of the noise. In addition, we

consider 2 generating models of εi(z):
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Figure 2: Relative size of variance components for different choices of γ, δ and α under the inde-
pendent t residual.

• Worst-case residual: let ε(z) := (ε1(z), . . . , εn(z)),

ε(1) = Scale((I −H)(H11, . . . ,Hnn)
⊤); ε(0) = −2 Scale((I −H)(H11, . . . ,Hnn)

⊤).

This residual is motivated by Lei and Ding [2021] and produces a large bias for regression-
adjusted estimators in theory.

• t residual: εi(z) = Scale(ε̆i(z)). ε̆i(z) is generated i.i.d. from t distribution with 3 degrees of
freedom.

We view the simulation as a full factorial experiment and generate the data under all combi-
nations of the following 4 factors: δ = {0.25, 0.75}; γ = {0.5, 3} and the covariate-dimension-to-
sample-size-ratio α = {0.02, 0.1, 0.2, 0.3, 0.4, 0.7} and generating models of εi(z). Throughout this
section we fixX to be generated from t distribution with 3 degrees of freedom; in the Supplementary
Material we further provide simulations with X generated from Cauchy distribution.

Repeated sampling evaluation Once the pre-treatment variables {(Xi, Yi(1), Yi(0))}ni=1 are
generated, we fix them and draw 10000 random assignments. For evaluation criterion, We consider
the empirical relative root mean squared error (relative RMSE) defined by the empirical RMSE
of the estimators divided by the oracle standard errors of the unadjusted estimator τ̂unadj; and
the empirical relative absolute bias defined by the absolute of the empirical bias divided by the
asymptotic standard error of τ̂hd, σhd/

√
n. For inference procedures, we then compare, under a 0.05

significance level, the empirical coverage probabilities and empirical averages of relative confidence
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Figure 3: Relative bias for different choices of γ, δ and α under the worst-case residual and inde-
pendent t residual. The dashed lines signify 1. Notice that for the first figure, we zoom in on part
of the y-axis to better display the curve.

interval length defined by the corresponding confidence interval length divided by the length of the
confidence interval constructed without covariate adjustment.
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(a) worst-case residual
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Figure 4: Relative RMSE for different choices of γ, δ and α under the worst-case residual and
independent t residual. The dashed lines signify 1. Notice that for the first figure, we zoom in on
part of the y-axis to better display the curve.

Methods for comparison For estimators, we consider our proposed high-dimensional regression
estimator τ̂hd and its “un-debiased“ version τ̂hd,undb, i.e., the one without the debiasing step in (5);
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Figure 5: Empirical coverage probabilities for different choices of γ, δ and α under the worst-case
residual and independent t residual. The dashed lines signify 0.95.
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Lin’s regression estimator [Lin, 2013] τ̂lin, i.e., τ̂adj with β̂z constructed by only using samples from
treatment arm z, and its debiased version [Lei and Ding, 2021], τ̂lin,db defined by

τ̂lin,db = τ̂lin +
n0

n2
1

∑
Zi=1

Hiiêi(1)−
n1

n2
0

∑
Zi=0

Hiiêi(0),

where êi(z) = Yi − Ȳz − β̂
⊤
z (Xi − X̄z) for Zi = z with X̄z being the sample mean of covariates

under treatment arm z.

For the inference procedure, we consider 4 Wald-type confidence intervals based on the 4 point
estimators and their corresponding variance estimators. In particular, for τ̂hd and τ̂hd,undb, we pair
them with our recommended variance estimator σ̂2

hd,cb := min{σ̂2
hd, (σ̂

′
hd)

2} (“cb” for combine); for

τ̂lin and τ̂lin,db, we pair them with HC3 variance estimator σ̂2
lin,HC3 defined by

σ̂2
lin,HC3 :=

n

(n1 − 1)n1

∑
i:Zi=1

êi(1)
2

(1−Hii,1)2
+

n

(n0 − 1)n0

∑
i:Zi=0

êi(0)
2

(1−Hii,0)2
,

where and Hii,z = (Xi − X̄)⊤
{∑

j:Zj=z(Xj − X̄)(Xj − X̄)⊤
}−1

(Xi − X̄).

6.2 Results

Relative magnitude of variance components Figure 2 shows relative magnitude of σ2
hd,l,

σ2
hd,q, σ

2
adj divided by σ2

hd. With a relatively high dimension, the quadratic component σ2
hd,q is

non-negligible and, sometimes, becomes the main source of the asymptotic variance. Besides, as
the dimension increases, σ2

adj becomes an inaccurate approximation even for the linear component

of variance, σ2
hd,l, not to mention σ2

hd.

The effectiveness of debiasing Figure 3 shows the relative bias of different methods under
the worst-case residual and independent t residual, respectively. Apparently, the bias of τ̂hd is
significantly below 1 in all cases, even under large α and worst-case residual. At the same time,
under the worst-case residual, the relative bias of τ̂hd,undb can be significantly above 1. This suggests
the necessity of debiasing. Moreover, under again the worst-case residual, not only τ̂lin but also
τ̂lin,db have explosive growth in bias as α grows. τ̂lin,db has a bias smaller than τ̂lin; nevertheless
its bias is still non-negligible under all the worst-case residual setups, except for α = 0.02. This is
consistent with the theory of Lei and Ding [2021] requiring p tending to infinity slow enough.

Relative RMSE Figure 4 shows the relative RMSE of different methods under the worst-case
residual and independent t residual. Under the worst-case residual, τ̂hd has the best performance
among the 4 methods. The other methods have large RMSE due to their non-negligible bias. When
signal to noise ratio is relatively high (γ = 3), τ̂hd can exploit the covariate information to keep
relative RMSE smaller than 1, i.e., to perform better than the unadjusted estimator, even with high
dimensions. When the signal-to-noise ratio is low (γ = 0.5) and the degree of heterogeneity is high
δ = 0.75, the efficiency improvement from our estimator is less compelling. This is consistent with
our theory that the empirical correlation needs to be relatively larger than α to secure efficiency
improvement.
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Under the independent t residual, when α is small (say less than 0.1), all methods tend to have
similar RMSE. As α gets larger, their RMSE’s begin to diverge. Interestingly, both τ̂hd and τ̂hd,undb
have the smallest relative RMSE, whilst the relative bias of τ̂hd is obviously smaller than τ̂hd,undb
with independent t residual.

Finally, by checking the figures of both types of residual, we can conclude that when the signal
is weak (γ = 0.5) and the dimension is high, no method can guarantee improvement. But even in
the least favorable case, the relative RMSE of τ̂hd is just slightly above 1. In other words, τ̂hd never
does significant harm to RMSE.

Inference performance Figure 5 shows the empirical coverage probabilities of different methods
under the worst-case residual and independent t residual. Only the combination of (τ̂hd, σ̂hd,cb)
gives a valid empirical coverage in all cases. With worst-case residual, the other methods cannot
guarantee a correct empirical coverage as α grows.

Figure 6 shows the relative confidence interval length produced by σ̂hd,cb and σ̂lin,HC3. The
trend for the curve of σ̂hd,cb is very similar to that of τ̂hd in Figure 4. In particular, as long as
the relative RMSE of τ̂hd is less than 1, the relative confidence interval length of σ̂hd,cb is also less
than 1. This echoes our discussion of Corollary 2. In the least favorable case (γ = 0.5, δ = 0.75,
α = 0.7, worst-case residual), the relative confidence interval length is about 1.1, better than the
relative RMSE of τ̂hd (about 1.5).

Usefulness of σ̂hd,cb Figures 7b and 7a demonstrate the ratio of σ̂2
hd to σ̂′

hd
2. Under independent

t residual, σ̂2
hd is smaller which echoes Proposition 3. whilst under the worst-case residual σ̂′

hd
2 is

overall smaller. This supports our claim that σ̂2
hd,cb improves the estimation precision by taking

the advantages of both σ̂2
hd and σ̂′

hd
2.

7 Conclusion

In practical applications, ignoring covariate dimension can result in catastrophic finite sample
performance. Yet, at least under the context of finite-population inference, to the best of our
knowledge, no theory explains this phenomenon. In this paper, we fill this gap by proposing a
new debiased regression adjustment based average treatment effect estimator; and we study the
conditions so that our estimator can have an advantage over the unadjusted estimator. In general,
we require that the multiple correlation between covariates and potential outcomes increases with
the covariate-dimension-to-sample-size ratio. Therefore, we recommend that practitioners use a
moderate number of covariates that are predictive of the potential outcomes.

Our numerical analysis shows that compared to the other competitors, our estimator achieves
the best performance in terms of estimation precision, bias reduction, inference reliability, and con-
fidence interval length when the covariate-dimension-to-sample-size ratio is high; and an improved
efficiency compared to the unadjusted estimator with a sufficiently large signal to noise ratio. It
would be of interest to design new covariate adjustment based estimators that can bring improved
accuracy even with low signal to noise ratio, which we leave for future work. Our additional nu-
merical analysis in the Supplementary Material shows that our estimator is able to provide valid
confidence interval even for heavy-tailed covariates, such as from Cauchy distribution.

Our theory builds upon a new central limit theorem of homogeneous sums [Koike, 2022]. It
would also be interesting to use this new central limit theorem to study rerandomization [Morgan
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Figure 6: Relative confidence interval length for different choices of γ, δ and α under the worst-case
residual and independent t residual. The dashed lines signify 1.

and Rubin, 2012, Li and Ding, 2017] in the moderately high-dimensional regime. In this paper, we
mainly focus on completely randomized experiments. It would be interesting to extend our theory
to more complex experiments such as stratified experiments [Liu and Yang, 2020], and factorial
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Figure 7: Ratios of σ̂2
hd to σ̂′

hd
2 for different choices of γ, δ and α under the worst-case residual and

independent t residual. The dashed lines signify 1.

experiments [Liu et al., 2022]. We study a high-dimensional extension of the OLS estimator and it
would be interesting to consider the high-dimensional extension of the generalized linear estimator
[Guo and Basse, 2023].
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SUPPLEMENT TO “DEBIASED REGRESSION ADJUSTMENT
IN COMPLETELY RANDOMIZED EXPERIMENTS

WITH MODERATELY HIGH-DIMENSIONAL COVARIATES”

Appendix A provides some useful lemmas. It includes the technical details for the comments of
(11) and (12).

Appendix B studies the decomposition of τ̂adj and τ̂db. It includes the technical details for the
comment of (4).

Appendix C studies an extension of the Hàjek’s coupling.
Appendix D studies the asymptotic normality of τ̂db in the regime p = o(n). It includes the

proof of Theorem 1.
Appendix E studies the asymptotic normality of τ̂db in the moderately high-dimensional regime.

It includes the proof of Theorem 2.
Appendix F studies the validity of the proposed inference procedure. It includes the proof of

Theorem 3, Corollary 2, and the technical details for the comment of (10) and (13).
Appendix G studies the justification of assumptions. It includes the proof of Propositions 1–3

and Corollary 1.

Notations and definitions. Define [n] := {1, . . . , n}. We use
∑

[i1...ik]
to denote summation over

all (i1, . . . , ik) with mutually distinct elements in [n]. So we may use
∑

[i,j] and
∑

i ̸=j interchange-

ably. For any matrix A, let Aij be its (i, j)th element. We use Ã to denote a centered matrix
with

Ãij :=

{
Aij −

∑
k ̸=l Akl

n(n−1) , i ̸= j;

Aii −
∑

k Akk

n , i = j.

Let ∥A∥2, tr(A) be the l2 norm and trace of matrix A, respectively. For any random variable U , we
define Ũ := U −EU as a centered random variable. Let Z := (Z1, . . . , Zn). and Z̃ := (Z̃1, . . . , Z̃n).
Let δij = 1 if i = j and δij = 0, otherwise. For a vector y, let diag(y) be the diagonal square
matrix having y as its diagonal elements.

Z = (Z1, . . . , Zn) ∈ {0, 1}n is the indicator of a completely randomized experiment with
∑

i Zi =
n1 and n1/n = r1. Let T = (T1, . . . , Tn) ∈ {0, 1}n be the indicator of Bernoulli random sampling
with each element i.i.d. generated from Bernoulli random variable with probability r1. Moreover,
we construct T so that the joint distribution of T and Z follows the so-called “Hàjek‘s Coupling”
which will be discussed further in Appendix C.

A Some useful lemmas

We start by stating several useful lemmas and then proceed to prove the main results. Lemma A.1
shows the technical details of the comments of (11) and (12).

Lemma A.1. For any symmetric matrix A,B ∈ Rn×n, any constant c, d, and any population
{ai}ni=1, {b}ni=1, we have

SA+B,a,b = SA,a,b + SB,a,b, SA,ca,db = cdSA,a,b

S2
A,a+b = S2

A,a + S2
A,b + 2SA,a,b.
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Proof of Lemma A.1. By definition, we have

SA+B,a,b =
1

n− 1

n∑
i=1

n∑
j=1

(Aij +Bij)(ai − ā)(bj − b̄)⊤

=
1

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(bj − b̄)⊤ +
1

n− 1

n∑
i=1

n∑
j=1

Bij(ai − ā)(bj − b̄)⊤

=SA,a,b + SB,a,b,

and

SA,ca,db =
1

n− 1

n∑
i=1

n∑
j=1

Aijcd(ai − ā)(bj − b̄)⊤ = cdSA,a,b.

Using that Aij = Aji, we have

S2
A,a+b =

1

n− 1

n∑
i=1

n∑
j=1

Aij(ai + bi − ā− b̄)(aj + bj − ā− b̄)⊤

=
1

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(aj − ā)⊤ +
1

n− 1

n∑
i=1

n∑
j=1

Aij(bi − b̄)(bj − b̄)⊤

+
1

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(bj − b̄)⊤ +
1

n− 1

n∑
i=1

n∑
j=1

Aij(bi − b̄)(aj − ā)⊤

=
1

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(aj − ā)⊤ +
1

n− 1

n∑
i=1

n∑
j=1

Aij(bi − b̄)(bj − b̄)⊤

+
2

n− 1

n∑
i=1

n∑
j=1

Aij(ai − ā)(bj − b̄)⊤

= S2
A,a + S2

A,b + 2SA,a,b.

Lemma A.2. If (a1 − ā, . . . , an − ā)⊤ = A(b1 − b̄, . . . , bn − b̄)⊤, we have

S2
a = S2

A⊤A,b
.

Proof of Lemma A.2. Let a := (a1 − ā, . . . , an − ā)⊤ and b := (b1 − b̄, . . . , bn − b̄)⊤. Using a = Ab,
we get that

S2
a =

1

n− 1

n∑
i=1

(ai − ā)2 =
1

n− 1
aa⊤ =

1

n− 1
bA⊤Ab⊤ = S2

A⊤A,b

Lemma A.3. For any populations {ai}ni=1 and {bi}ni=1, we have that

(r1r0)S
2
r−1
1 a+r−1

0 b
= r−1

1 S2
a + r−1

0 S2
b − S2

a−b.
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Proof of Lemma A.3. Using Lemma A.1, we obtain that

(r1r0)S
2
r−1
1 a+r−1

0 b
=

r0
r1
S2
a +

r1
r0
S2
b + 2S2

a,b

=
( 1
r1

− 1
)
S2
a +

( 1
r0

− 1
)
S2
b + 2S2

a,b

=
1

r1
S2
a +

1

r0
S2
b − S2

a − S2
b + 2S2

a,b

=
1

r1
S2
a +

1

r0
S2
b − S2

a−b.

Lemma A.4. Consider any finite population {yi}i∈[n], the variance of its sample total is

var

( ∑
i:Zi=1

yi

)
=

n1n0

n(n− 1)

∑
i

(yi − ȳ)2.

Proof of Lemma A.4. See Theorem 2.2 of Cochran [1977].

Lemma A.5. If
∑

i(yi − ȳ)2 = O(n) and r1 tends to a limit in (0, 1), then we have∑
i:Zi=1

(yi − ȳ)/n1 = OP(n
−1/2).

Proof of Lemma A.5. It follows from Lemma A.4 and Chebyshev’s inequality.

Lemma A.6. Let Al, l = 1, . . . , q, be n× n deterministic matrices with n ⩾ 2. Let α2
l1, . . . , α

2
ln be

the eigenvalues of AlA
⊤
l in descending order with αli ≥ 0 for l ∈ [q] and i ∈ [n]. Then, we have

that

−
n∑

i=1

α1i · · ·αqi ⩽ tr (A1 · · ·Aq) ⩽
n∑

i=1

α1i · · ·αqi.

Proof of Lemma A.6. This Lemma follows directly from Theorem (second version) of Kristof [1970]
with Γl = I, l = 1, . . . , q.

We will use Lemma A.6 repeatedly. For example, to bound the following quadratic form of yi’s,∑
[i,j]H

4
ijy

2
i y

2
j . Let y = (y1, . . . , yn). We rewrite the quadratic form as the trace of the product of

several matrices ∑
[i1,i2]

H4
i1i2y

2
i1y

2
i2 = tr

(
diag(y)2 diag−(Q) diag(y)2 diag−(Q)

)
.

We can apply Lemma A.6 with A1, A2, A3, A4 being diag(y)2, diag−(Q),diag(y)2, diag−(Q), re-
spectively. Let |y(1)| ≥ . . . ≥ |y(n)| be the ordered sequence of {|yi|}ni=1. Note that, for i = 1, . . . , n,

α1i = α3i = |y(i)|, α2i = α4i < ∥diag−(Q)∥2.

Therefore, there is∣∣∣∣∣∣
∑
[i1,i2]

H4
i1i2y

2
i1y

2
i2

∣∣∣∣∣∣ < ∥diag−(Q)∥22
∑
i

y2(i) = ∥ diag−(Q)∥22
∑
i

y2i .
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Lemma A.7. We have that

∥diag−{Q}∥2 ≤ 1, ∥ diag−{H}∥2 ≤ 2

Proof of lemma A.7. Using the Gershgorin circle theorem (see Theorem 0 of Bell [1965]), we get
that

∥diag−{Q}∥2 < max
i

∑
j∈[n]\i

H2
ij = max

i
(Hii −H2

ii) < 1.

On the other hand, by the triangle inequality, we have

∥ diag−{H}∥2 ≤ ∥H∥2 + ∥ diag{H}∥2 ≤ 2.

Recall the definition of A(z) in the main text.

Lemma A.8. Fix z ∈ {0, 1}. Let di(z) be the i-th entry of H(Y1(z) − Ȳ (z), . . . , Yn(z) − Ȳ (z))⊤.
We have that ∑

i∈[n]\{j}

Ãij(z) = −sj(z),
∑

j∈[n]\{i}

Ãij(z) = di(z)− si(z), Ãii(z) = si(z).

Proof of Lemma A.8. By the fact
∑

i,j Aij(z) = 0, we see that

Ã(z) = A(z)−
∑

iAii(z)

n− 1

(
I − 1

n
11⊤

)
. (16)

Let Y (z) := (Y1(z), . . . , Yn(z)) and d(z) := (d1(z), . . . , dn(z)). Therefore, we have

Ã(z)1 = A(z)1 = H diag(Y (z)− Ȳ (z)1)1 = H(Y (z)− Ȳ (z)1) = d(z),

and
Ã(z)⊤1 = A(z)⊤1 = diag(Y (z)− Ȳ (z)1)H1 = 0,

which implies that ∑
j

Ãij(z) = di(z),
∑
i

Ãij(z) = 0. (17)

By (16), we have

Ãii(z) = Aii(z)−
∑

iAii(z)

n

= Hii(Yi(z)− Ȳ (z))− 1

n

n∑
i=1

Hii(Yi(z)− Ȳ (z)) = si(z).
(18)

Combining (17) and (18), we get that∑
i∈[n]\{j}

Ãij(z) = −sj(z),
∑

j∈[n]\{i}

Ãij(z) = di(z)− si(z).

This concludes the proof.

28



B Decompostion of τ̂adj

In this section, we derive the decompositions of τ̂adj and τ̂db, which correspond to Propositions B.1
and B.3. Before proving these results, we first state some useful lemmas.

Lemma B.1. Fix z ∈ {0, 1}. Under Assumption 2, we have∑
iAii(z)

n
=

∑
iHii

(
Yi(z)− Ȳ (z)

)
n

= O(1).

Proof of Lemma B.1. By Cauchy-Schwartz inequality, we have∑
iHii

(
Yi(z)− Ȳ (z)

)
n

≤
(∑

iH
2
ii

n

)1/2
(∑

i

(
Yi(z)− Ȳ (z)

)2
n

)1/2

.

Recall that for i ∈ [n], Hii ≤ 1, we have
∑

iH
2
ii ≤

∑
iHii = p. Therefore,

∑
iHii

(
Yi(z)− Ȳ (z)

)
n

≤
( p
n

)1/2(∑
i

(
Yi(z)− Ȳ (z)

)2
n

)1/2

= O(1),

where in the last step we applied Assumption 2.

Lemma B.2. Fix z ∈ {0, 1}. Under Assumptions 2 and 3, we have that

Z⊤Ã(z)Z = oP(n).

Moreover, we have
Z⊤H̃Z = oP(n).

Proof of Lemma B.2. Since
∑

i,j Aij(z) = 0 and
∑

i,j Hij = 0, we have∑
i ̸=j

Aij(z) = −
∑
i

Aii(z),
∑
i ̸=j

Hij = −
∑
i

Hii,

which gives that

Ã(z) = A(z)−
∑

iAii(z)

n− 1

(
I − 1

n
11⊤

)
, H̃ = H −

∑
iHii

n− 1

(
I − 1

n
11⊤

)
.

In light of these equations, we now analyze Z⊤A(z)Z,Z⊤HZ and Z⊤ (I − 11⊤/n
)
Z one by one.

We first consider Z⊤A(z)Z. Observe that

Z⊤A(z)Z =
∑
[i,j]

ZiZjHij(Yj(z)− Ȳ (z)) +
∑
i

ZiHii(Yi(z)− Ȳ (z)).

Applying Lemmas F.2 and F.3 with yi = 1, gi = Yi(z)− Ȳ (z), Dij = Hij , and ai = Hii, we get∑
[i,j]

ZiZjHij(Yj(z)− Ȳ (z)) = r21
∑
[i,j]

Hij(Yj(z)− Ȳ (z)) + oP(n),
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and ∑
i

ZiHii(Yi(z)− Ȳ (z)) = r1
∑
i

Hii(Yi(z)− Ȳ (z)) + oP(n).

Therefore, we have

Z⊤A(z)Z =
∑
[i,j]

r21Hij(Yj(z)− Ȳ (z)) +
∑
i

r1Hii(Yi(z)− Ȳ (z)) + oP(n).

Applying similar analysis to Z⊤HZ and Z⊤(I − 11⊤/n)Z, we get

Z⊤HZ =
∑
[i,j]

r21Hij +
∑
i

r1Hii + oP(n),

Z⊤(I − 11⊤/n)Z = −
∑
[i,j]

r21
1

n
+
∑
i

r1
n− 1

n
+ oP(n).

Putting together, we have

Z⊤H̃Z = Z⊤
{
H −

∑
iHii

n− 1
(I − 11⊤/n)

}
Z

=
∑
[i,j]

r21

(
Hij +

∑
iHii

n(n− 1)

)
+
∑
i

r1

(
Hii −

∑
iHii

n

)
+ oP(n) + oP(n)

∑
iHii

n− 1

= 0 + 0 + oP(n) + oP(n) · p/(n− 1) = oP(n),

where the last equality again uses
∑

i,j Hij = 0. Similarly, we have

Z⊤Ã(z)Z = Z⊤
{
A(z)−

∑
iAii(z)

n− 1
(I − 11⊤/n)

}
Z

=
∑
[i,j]

r21

(
Aij(z) +

∑
iAii(z)

n(n− 1)

)
+
∑
i

r1

(
Aii(z)−

∑
iAii(z)

n

)

+ oP(n) + oP(n)

∑
iAii(z)

n− 1
.

Apparently, the second term on the right-hand side of the above decomposition is equal to zero.
For the first term, using that∑

i

∑
j

Aij(z) =
∑
j

∑
i

Hij(Yj(z)− Ȳ (z)) = 0,

we see that the first term is equal to zero as well. For the last term, applying Lemma B.1 yields∑
i Aii(z)
n−1 = O(1). Putting together, we have Z⊤Ã(z)Z = oP(n), which concludes the proof.

The following proposition gives the detailed formulation and proof of (4).
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Proposition B.1. If Assumptions 1–3 hold, then we have

τ̂adj − τ̄ +
r1r0
n

n∑
i=1

Hii

(
Yi(1)− Ȳ (1)

r21
− Yi(0)− Ȳ (0)

r20

)
=

1

n

∑
i

(Zi − r1)ci −
1

n

∑
[i,j]

(Zi − r1)(Zj − r1)

(
Aij(1)

r21
− Aij(0)

r20

)
+ oP(n

−1/2),

where

ci = αr0
Yi(1)− Ȳ (1)

r21
+ αr1

Yi(0)− Ȳ (0)

r20
− (r0 − r1)

(
si(1)

r21
− si(0)

r20

)
+

ei(1)

r1
+

ei(0)

r0
.

proof of Proposition B.1. In the following proof, for ease of presentation, we write Xi := Xi − X̄.
We observe that

τ̂adj =

∑
i ZiYi(1)

n1
−
∑

i(1− Zi)Yi(0)

n0
− (r1β̂0 + r0β̂1)

⊤

(∑
i

ZiXi
n

n1n0

)
.

Expanding the third term in the expression, we get

(r1β̂0 + r0β̂1)
⊤

(∑
i

ZiXi
n

n1n0

)
=

(∑
i

ZiX
⊤
i

n

n1n0

)
S−2

X

(
r1sX,Y (0) + r0sX,Y (1)

)
.

We define

M1 = r0

(∑
i

ZiX
⊤
i

n

n1n0

)
S−2

X sX,Y (1), M2 = r1

(∑
i

ZiX
⊤
i

n

n1n0

)
S−2

X sX,Y (0).

We now analyze the two terms M1 and M2.
For M1, we write it as

M1 =r0

(∑
i

ZiX
⊤
i

n

n1n0

)
S−2

X sX,Y (1)

=r0

(∑
i

ZiX
⊤
i

n

n1n0

)
S−2

X

(
1

n1 − 1

∑
i

ZiXi(Yi(1)− Ȳ1)

)

=
n− 1

(n1 − 1)n1
Z⊤A(1)Z +

n− 1

(n1 − 1)n1
Z⊤HZ(Ȳ (1)− Ȳ1) =: M11 +M12.

For M11, by the definition of Ã(1) and the fact that

Z⊤(I − 11⊤/n)Z =
n1n0

n
,

we decompose it as

M11 =
n− 1

(n1 − 1)n1
Z⊤A(1)Z =

n− 1

(n1 − 1)n1

(
Z⊤Ã(1)Z +

∑
iHii

(
Yi(1)− Ȳ (1)

)
n− 1

n1n0

n

)
=:M111 +M112.
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For M111, we further expand Z⊤Ã(1)Z. We introduce di(z) as the i-th entry of H(Y1(z) −
Ȳ (z), . . . , Yn(z)− Ȳ (z))⊤. Applying Lemma A.8 and using the fact

∑
[i,j] Ãij(z) = 0 repeatedly, we

obtain that

Z⊤Ã(1)Z =
∑
i

Zisi(1) +
∑
[i,j]

ZiZjÃij(1)

=
∑
i

Zisi(1) +
∑
[i,j]

(Zi − r1)(Zj − r1)Ãij(1) +
∑
[i,j]

(Zi − r1)r1Ãij(1)

+
∑
[i,j]

(Zj − r1)r1Ãij(1) +
∑
[i,j]

r21Ãij(1)

=
∑
i

(Zi − r1)si(1) +
∑
[i,j]

(Zi − r1)(Zj − r1)Ãij(1) +
∑
i

r1(Zi − r1)(di(1)− si(1))

+
∑
j

r1(Zj − r1)(−sj(1))

=
∑
i

(Zi − r1)(si(1) + r1di(1)− 2r1si(1)) +
∑
[i,j]

(Zi − r1)(Zj − r1)Ãij(1)

=
∑
i

(Zi − r1)(si(1) + r1di(1)− 2r1si(1)) +
∑
[i,j]

(Zi − r1)(Zj − r1)Aij(1) +OP(1),

where in the last step, we used that∑
[i,j]

(Zi − r1)(Zj − r1) = −
∑
i

(Zi − r1)
2 = O(n),

and that by Lemma B.1,

Aij(1)− Ãij(1) = −
∑

iHii

(
Yi(1)− Ȳ (1)

)
(n− 1)n

= O(n−1), ∀i ̸= j.

Moreover, by Lemma B.2, Z⊤Ã(1)Z = oP(n). Thus, we obtain that

M111 =

(
n

n2
1

+O(n−2)

)
Z⊤Ã(1)Z =

n

n2
1

Z⊤Ã(1)Z + oP(n
−1)

=
1

nr21

∑
i

(Zi − r1)(si(1) + r1di(1)− 2r1si(1))

+
1

nr21

∑
[i,j]

(Zi − r1)(Zj − r1)Aij(1) +OP(n
−1).

On the other hand, for M112, we use Lemma B.1 to get that

M112 =

(
n0

n1
+O(n−1)

) ∑
iHii

(
Yi(1)− Ȳ (1)

)
n

=
r0
r1

∑
iHii

(
Yi(1)− Ȳ (1)

)
n

+O(n−1).
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For M12, we see that

Z⊤HZ = Z⊤H̃Z +

∑
iHii

n− 1

n1n0

n
= Z⊤H̃Z +

αn1n0

n− 1
,

with which we can decompose M12 as

M12 =
n− 1

(n1 − 1)n1
Z⊤H̃Z(Ȳ (1)− Ȳ1) +

αn0

n1 − 1
(Ȳ (1)− Ȳ1) =: M121 +M122. (19)

By Lemmas A.5 and B.2, we have that

M121 = O(n−1)oP(n)OP(n
−1/2) = oP(n

−1/2).

For M122, we can derive that

M122 =

(
αr0
r1

+O(n−1)

)
(Ȳ (1)− Ȳ1) =

αr0
r1

(Ȳ (1)− Ȳ1) +OP(n
−3/2).

Combining the above results, we obtain that

M1 =
r0
r1

∑
iHii

(
Yi(1)− Ȳ (1)

)
n

+
1

nr21

∑
i

(Zi − r1)
[
si(1) + r1di(1)− 2r1si(1)− αr0(Yi(1)− Ȳ (1))

]
+

1

nr21

∑
[i,j]

(Zi − r1)(Zj − r1)Aij(1) + oP(n
−1/2). (20)

Now, notice that

M1 = r0

 ∑
i:Zi=1

X⊤
i /n1 −

∑
i:Zi=0

X⊤
i /n0

S−2
X sX,Y (1),

M2 = −r1

 ∑
i:Zi=0

X⊤
i /n0 −

∑
i:Zi=1

X⊤
i /n1

S−2
X sX,Y (0).

So, similar arguments also apply to M2. By symmetry, replacing Zi with 1 − Zi, replacing the
treatment-group-specific quantities with their control-group analogues in the formula of (20), and
multiplying with a negative sign, we obtain that

M2 = −r1
r0

∑
iHii

(
Yi(0)− Ȳ (0)

)
n

+
1

nr20

∑
i

(Zi − r1)
[
si(0) + r0di(0)− 2r0si(0)− αr1(Yi(0)− Ȳ (0))

]
− 1

nr20

∑
[i,j]

(Zi − r1)(Zj − r1)Aij(0) + oP(n
−1/2).
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Finally, the conclusion follows immediately from the equation

τ̂adj − τ̄ =

∑
i Zi(Yi(1)− Ȳ (1))

nr1
−
∑

i(1− Zi)(Yi(0)− Ȳ (0))

nr0
−M1 −M2

=
1

n

n∑
i=1

(Zi − r1)

(
Yi(1)− Ȳ (1)

r1
+

Yi(1)− Ȳ (0)

r0

)
−M1 −M2,

and that ei(z) = Yi(z)− Ȳ (z)− di(z) for z ∈ {0, 1}.

As a direct consequence of Proposition B.1, the bias term is

b = −r1r0
n

n∑
i=1

Hii

(
Yi(1)− Ȳ (1)

r21
− Yi(0)− Ȳ (0)

r20

)
.

Recall that we estimate the bias via (see also (5))

b̂ =: −r1r0

 1

n1

∑
i:Zi=1

Hii
(Yi − Ȳ1)

r21
− 1

n0

∑
i:Zi=0

Hii
(Yi − Ȳ0)

r20

 .

We apply the following proposition to characterize b̂:

Proposition B.2. If Assumptions 1–3 hold, then we have that

b̂ = b− 1

n

∑
i

(Zi − r1)

{
r0
si(1)

r21
− r0α

Yi(1)− Ȳ (1)

r21
+ r1

si(0)

r20
− r1α

Yi(0)− Ȳ (0)

r20

}
+ oP(n

−1/2).

Proof of Proposition B.2. We see that

b̂ = −r1r0

 1

n1

∑
i:Zi=1

(Hii − α)
Yi − Ȳ1

r21
− 1

n0

∑
i:Zi=0

(Hii − α)
Yi − Ȳ0

r20

 =: M1 +M2,

where

M1 = −r1r0

 1

n1

∑
i:Zi=1

(Hii − α)
Ȳ (1)− Ȳ1

r21
− 1

n0

∑
i:Zi=0

(Hii − α)
Ȳ (0)− Ȳ0

r20

 ,

M2 = −r1r0

 1

n1

∑
i:Zi=1

(Hii − α)
Yi − Ȳ (1)

r21
− 1

n0

∑
i:Zi=0

(Hii − α)
Yi − Ȳ (0)

r20

 .

For any {a1, . . . , an} and {b1, . . . , bn} with empirical averages ā and b̄, there is∑
i:Zi=1

ai/n1 −
∑

i:Zi=0

bi/n0 =ā− b̄+
1

n

∑
i

Zi

(
ai − ā

r1
+

bi − b̄

r0

)

=ā− b̄+
1

n

∑
i

(Zi − r1)

(
ai − ā

r1
+

bi − b̄

r0

)
.
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Applying the above equation with ai and bi replaced by (Hii−α)Yi(1)−Ȳ (1)
r21

and (Hii−α)Yi(0)−Ȳ (0)
r20

,

respectively, we obtain that

M2 = b− 1

n

∑
i

(Zi − r1)

{
r0
si(1)

r21
− r0α

Yi(1)− Ȳ (1)

r21
+ r1

si(0)

r20
− r1α

Yi(0)− Ȳ (0)

r20

}
.

It suffice to show that M1 = oP(n
−1/2). Applying Lemma A.5 with yi = Hii or Yi(z), we get∑

i:Zi=z(Hii − α)/nz = OP(n
−1/2) and Ȳz − Ȳ (z) = OP(n

−1/2), which implies that

M1 = OP(n
−1/2)OP(n

−1/2) = oP(n
−1/2).

This concludes the proof.

Combining Propositions B.1 and B.2, it is straightforward to derive the following result.

Proposition B.3. If Assumptions 1–3 hold, then we have that

τ̂db − τ̄ = n−1
∑
i

(Zi − r1)

{
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

}
− n−1

∑
[i,j]

(Zi − r1)(Zj − r1)

(
Aij(1)

r21
− Aij(0)

r20

)
+ oP(n

−1/2).

C Hàjek‘s coupling

In this section, we study Hàjek’s coupling for sampling without replacement. We prove the second-
order Hàjek’s coupling which is Proposition C.2. Then we use it to prove that τ̂db is asymptotically
equal to the summation of several homogeneous sums which is Proposition C.3.

For ease of presentation, we consider a finite population {yi}i∈[n] with
∑n

i=1 yi = 0. Let Aij be

the (i, j)-th element of A := H diag (y1, . . . , yn). Let di be the ith element of H(y1, . . . , yn)
⊤. We

can see that ∑
j

Ãij = di;
∑
i

Ãij = 0.

Recall that Z = (Z1, . . . , Zn) ∈ {0, 1}n is the indicator of a completely randomized experiment with∑
i Zi = n1 and n1/n = r1. Let T = (T1, . . . , Tn) ∈ {0, 1}n be the indicator of Bernoulli random

sampling with each element i.i.d. generated from Bernoulli random variable with probability r1.
Let n′

1 =
∑

i Ti and T = {i : Ti = 1}. We assume the following coupling between T and Z:

• If n′
1 = n1, Z = T ,

• If n′
1 > n1, we select a random sample D of size n′

1−n1 in T and define Zi = 0 for i ∈ D and
Zi = Ti for i ∈ [n]\D,

• If n′
1 < n1, we select a random sample D of size n1 − n′

1 in [n]\T and define Zi = 1 for i ∈ D
and Zi = Ti for i ∈ [n]\D.

Proposition C.1 (First-order Hàjek’s coupling). If Assumption 1 holds and
∑

i y
2
i = O(n), then

we have that
n−1/2

∑
i

(Zi − Ti)yi = oP(1).
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Proof of Proposition C.1. The proposition follows from Lemma A3 (iii) of Wang and Li [2022] with
ui = yi.

Proposition C.2 (Second-order Hàjek’s coupling). Under Assumption 1 and
∑

i y
2
i = O(n), we

have
n−1/2

∑
[i,j]

(ZiZj − TiTj)Ãij = oP(1).

Proof of Proposition C.2. Let v = (v1, . . . , vn)
⊤ be a uniform at random permutation of {1, . . . , n}

and is independent from n′
1. Write D :=

∑
[i1,i2]

Ãi1i2(Ti1Ti2 − Zi1Zi2); apparently ED = 0. We

now bound E[D2]. First, from the coupling between T and Z, by conditioning on n′
1, the random

variable D is equal in distribution to

n′
1∑

i=n1+1

n1∑
j=1

Ãvivj +

n1∑
i=1

n′
1∑

j=n1+1

Ãvivj +

n′
1∑

i=n1+1

n′
1∑

j=n1+1

Ãvivj (1− δij)

if n′
1 > n1,

−
n1∑

i=n′
1+1

n′
1∑

j=1

Ãvivj −
n′
1∑

i=1

n1∑
j=n′

1+1

Ãvivj −
n1∑

i=n′
1+1

n1∑
j=n′

1+1

Ãvivj (1− δij)

if n′
1 < n1, and 0 if n′

1 = n1.
We first consider D2 conditioning on some n′

1 > n1. Under this event, we can write D =∑
(i,j)∈S Ãvivj , where

S := {(i, j) : n1 + 1 ≤ i ≤ n′
1, 1 ≤ j ≤ n1} ∪ {(i, j) : 1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n′

1}∪
{(i, j) : n1 + 1 ≤ i, j ≤ n′

1, i ̸= j}.

Then, we have that

D2 =
∑

i ̸=j,(i,j)∈S

Ã2
vivj +

∑
i ̸=j,(i,j)∈S

Ãvivj Ãvjvi +
∑

i ̸=j ̸=k,(i,j),(k,j)∈S

Ãvivj Ãvkvj+

+
∑

i ̸=j ̸=k,(i,j),(j,k)∈S

Ãvivj Ãvjvk +
∑

i ̸=j ̸=k,(i,j),(i,k)∈S

Ãvivj Ãvivk +
∑

i ̸=j ̸=k ̸=l,(i,j),(k,l)∈S

Ãvivj Ãvkvl .

For the first term, we have that for each index,

EÃ2
vivj =

∑
[i1,i2]

Ã2
i1i2

n(n− 1)
.

Similarly, we have

EÃvivj Ãvjvi =

∑
[i1,i2]

Ãi1i2Ãi2i1

n(n− 1)
, EÃvivj Ãvkvj =

∑
[i1...i3]

Ãi1i2Ãi3i2

n(n− 1)(n− 2)
,

EÃvivj Ãvjvk =

∑
[i1...i3]

Ãi3i2Ãi2i1

n(n− 1)(n− 2)
, EÃvivj Ãvivk =

∑
[i1...i3]

Ãi2i3Ãi2i1

n(n− 1)(n− 2)
,

EÃvivj Ãvkvl =

∑
[i1...i4]

Ãi1i2Ãi3i4

n(n− 1)(n− 2)(n− 3)
.
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To understand the order of the above terms, we introduce M1, . . . ,M5 as

M1 :=
∑
i1

Ã2
i1i1 , M2 :=

∑
[i1,i2]

Ã2
i1i2 , M3 :=

∣∣∣∣ ∑
[i1,i2]

Ãi1i2Ãi2i1

∣∣∣∣,
M4 :=

∑
i1

d2i1 , M5 :=

∣∣∣∣∑
i1

di1Ãi1i1

∣∣∣∣,
Now, by repeatedly applying

∑
j Ãij = di and

∑
i Ãij = 0, we obtain that∑

[i1...i3]

Ãi1i2Ãi1i3 =
∑
[i1,i2]

di1Ãi1i2 −
∑
[i1,i2]

(Ãi1i2Ãi1i1 + Ãi1i2Ãi1i2)

=
∑
[i1,i2]

di1Ãi1i2 −
∑
[i1,i2]

Ãi1i2Ãi1i1 −M2

=
∑
[i1,i2]

di1Ãi1i2 −
∑
i1

(di1Ãi1i1 − Ãi1i1Ãi1i1)−M2

=
∑
[i1,i2]

di1Ãi1i2 +O(M1 +M2 +M5)

=
∑
i1

(d2i1 − di1Ãi1i1) +O(M1 +M2 +M5) = O(M1 +M2 +M4 +M5);∑
[i1...i3]

Ãi1i2Ãi2i3 =
∑
[i1,i2]

Ãi1i2di2 −
∑
[i1,i2]

(Ãi1i2Ãi2i1 + Ãi1i2Ãi2i2)

=
∑
[i1,i2]

Ãi1i2di2 −M3 +
∑
i2

Ã2
i2i2

=
∑
[i1,i2]

Ãi1i2di2 +O(M1 +M3)

= −
∑
i2

Ãi2i2di2 +O(M1 +M3) = O(M1 +M3 +M5);∑
[i1...i3]

Ãi1i2Ãi3i2 = −
∑
[i1,i2]

(Ãi1i2Ãi1i2 + Ãi1i2Ãi2i2) = O(M1 +M2).

Applying
∑

i di = 0 and
∑

i Ãii = 0,, we obtain that∑
[i1...i4]

Ãi1i2Ãi3i4 =
∑

[i1...i3]

Ãi1i2di3 −
∑

[i1...i3]

(Ãi1i2Ãi3i1 + Ãi1i2Ãi3i2 + Ãi1i2Ãi3i3)

= −
∑
[i1,i2]

(Ãi1i2di1 + Ãi1i2di2)−
∑

[i1...i3]

(Ãi1i2Ãi2i3 + Ãi1i2Ãi3i2 + Ãi1i2Ãi3i3)

= −
∑
[i1,i2]

(Ãi1i2di1 + Ãi1i2di2)−
∑

[i1...i3]

Ãi1i2Ãi3i3 −
∑

[i1...i3]

(Ãi1i2Ãi2i3 + Ãi1i2Ãi3i2)

= −
∑
[i1,i2]

(Ãi1i2di1 + Ãi1i2di2) +
∑
[i1,i2]

(Ãi1i2Ãi1i1 + Ãi1i2Ãi2i2)

−
∑

[i1...i3]

(Ãi1i2Ãi2i3 + Ãi1i2Ãi3i2).
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Then, using the derivations in the analysis of
∑

[i1...i3]
Ãi1i2Ãi1i3 ,

∑
[i1...i3]

Ãi1i2Ãi2i3 and
∑

[i1...i3]
Ãi1i2Ãi3i2 ,

we get that ∑
[i1...i4]

Ãi1i2Ãi3i4 = O(M1 + · · ·+M5).

On the other hand, writing ∆ := |n′
1 − n1|, we have

|S| ≤ 2n∆, |{(i, j, k) : i ̸= j ̸= k, (i, j), (k, j) ∈ S}| ≤ 2n2∆,

|{(i, j, k, l) : i ̸= j ̸= k ̸= l, (i, j), (k, l) ∈ S}| ≤ 4n2∆2 ≤ 4n3∆.

Putting together, we obtain that when n′
1 > n1, there exists a universal constant C > 0 which does

not depend on ∆ such that

E[D2 | n′
1] ≤ C∆n−1

5∑
t=1

Mt.

With similar arguments, we can obtain the same bound for E[D2 | n′
1] when n′

1 < n1. Finally, with
the law of total expectation, we obtain that

E[D2] ≤ CE[∆]n−1(M1 +M2 +M3 +M4 +M5).

Now, by Assumption 1, we can bound E∆ as

E∆ ≤ (E∆2)1/2 = (nr1r0)
1/2 = O(n1/2).

Combining these results, we get

ED2 = O
(
n−1/2(M1 +M2 +M3 +M4 +M5)

)
.

It remains to bound Mi, i = 1, . . . , 5. Since Hi1i1 ≤ 1 and Hi2i2 =
∑

i1
H2

i1i2
(due to the fact

H = H2), we have that

M1 =
∑
i1

Ã2
i1i1 ≤

∑
i1

H2
i1i1y

2
i1 ≤

∑
i1

y2i1 = O(n),

M2 =
∑
[i1,i2]

Ã2
i1i2 ≤

∑
[i1,i2]

H2
i1i2y

2
i2 ≤

∑
i1

Hi1i1y
2
i1 ≤

∑
i1

y2i1 = O(n).

By Cauchy-Schwarz inequality, we have that M3 ≤ M2 = O(n). Finally, we have

M4 =
∑
i

d2i ≤
∑
i

y2i = O(n), M5 ≤ (M4M1)
1/2 = O(n).

The above bounds give that ED2 = O(n1/2). Therefore, by Chebyshev’s inequality, we have∑
[i1,i2]

Ãi1i2(Ti1Ti2 − Zi1Zi2) = Op(n
1/4) = oP(n

1/2).

The conclusion then follows.
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Equipped with Propositions C.1 and C.2, we can now approximate τ̂db with a polynomial of
Ti’s.

Proposition C.3. If Assumptions 1–3 hold, then we have that

τ̂db − τ̄ = n−1
∑
i

(Ti − r1)

(
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

)
− n−1

∑
[i,j]

(Ti − r1) (Tj − r1)

(
Aij(1)

r21
− Aij(0)

r20

)
+ oP(n

−1/2).

Proof. For ease of presentation, we write Z̃i = Zi − r1 and T̃i = Ti − r1. By proposition B.3, it
remains to show that

M1 −M2 := n−1
∑
i

(T̃i − Z̃i)

(
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

)
− n−1

∑
[i,j]

(T̃iT̃j − Z̃iZ̃j)

(
Aij(1)

r21
− Aij(0)

r20

)
= oP(n

−1/2).

For the term M2, using
∑

i,j Aij(z) = 0, we obtain the decomposition

1

n

∑
[i,j]

(T̃iT̃j − Z̃iZ̃j)

(
Aij(1)

r21
− Aij(0)

r20

)

=
1

n

∑
[i,j]

(T̃iT̃j − Z̃iZ̃j)

(
−
∑

iAii(1)

r21n(n− 1)
+

∑
iAii(0)

r20n(n− 1)

)

+
1

n

∑
[i,j]

(T̃iT̃j − Z̃iZ̃j)

(
Ãij(1)

r21
− Ãij(0)

r20

)
=: M21 +M22.

For M21, as shown in the proof of Proposition B.1, we have∑
[i,j]

Z̃iZ̃j = O(n).

This, together with Lemma B.1, yields that∑
[i,j]

Z̃iZ̃j

∑
iAii(z)

n(n− 1)
= O(1).

Moreover, we see that for i ̸= j ̸= k ̸= l,

ET̃ 2
i T̃j T̃k = 0, ET̃iT̃j T̃kT̃l = 0,

which implies that

E
(∑

[i,j]

T̃iT̃j

∑
iAii(z)

n(n− 1)

)2

= 2
∑
[i,j]

E(T̃iT̃j)
2

(∑
iAii(z)

n(n− 1)

)2

= 2(r1r0)
2n(n− 1)

(∑
iAii(z)

n(n− 1)

)2

= O(1),
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where the last inequality follows from Lemma B.1. Then, by Chebyshev’s inequality, we have∑
[i,j]

T̃iT̃j

∑
iAii(z)

n(n− 1)
= OP(1).

Combining these results, we obtain M21 = OP(n
−1).

We now focus on M22. We first expand it as

M22 =
1

n

∑
[i,j]

(TiTj − ZiZj − r1Ti + r1Zi − r1Tj + r1Zj)

(
Ãij(1)

r21
− Ãij(0)

r20

)

=
1

n

∑
[i,j]

(TiTj − ZiZj)

(
Ãij(1)

r21
− Ãij(0)

r20

)
+

1

n

∑
[i,j]

r1(Zi − Ti)

(
Ãij(1)

r21
− Ãij(0)

r20

)

+
1

n

∑
[i,j]

r1(Zj − Tj)

(
Ãij(1)

r21
− Ãij(0)

r20

)
.

Then, by Lemma A.8, we see that

M22 =
1

n

∑
[i,j]

(TiTj − ZiZj)

(
Ãij(1)

r21
− Ãij(0)

r20

)

+
1

n

∑
i

r1(Zi − Ti)

(
di(1)

r21
− si(1)

r21
− di(0)

r20
+

si(0)

r20

)
+

1

n

∑
i

r1(Zi − Ti)

(
−si(1)

r21
+

si(0)

r20

)
.

Applying Proposition C.2 with yi = Yi(z)− Ȳ (z), we get

∑
[i,j]

(TiTj − ZiZj)

(
Ãij(1)

r21
− Ãij(0)

r20

)
= oP(n

1/2).

Then, applying Proposition C.1 with yi = si(z) and di(z), we get∑
i

(Zi − Ti)si(z) = oP(n
1/2),

∑
i

(Zi − Ti)di(z) = oP(n
1/2), (21)

which implies that M22 = oP(n
−1/2). Together with the bound on M21, it implies that

M2 = oP(n
−1/2).

It remains to bound M1. By Proposition C.1 with yi = ei(z), we have∑
i

(Zi − Ti)ei(z) = oP(n
1/2),

which, combined with (21), implies that M1 = oP(n
−1/2). This concludes the proof.
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D Asymptotic normality of τ̂db when p = o(n)

In this section, we study the asymptotic normality of τ̂db when p = o(n) and give the proof of
Theorem 1. We first state some lemmas that will be used in the proof.

The following Lemma demonstrates that for a sequence of population {yi}i∈[n] satisfying a
bounded second moment and a Lindeberg–Feller–type condition, the linear type statistics is asymp-
totically normal.

Lemma D.1. Let σ2
y = r1r0

∑
i(yi − ȳ)2/n. If lim infn→∞ σy > 0 and maxi(yi − ȳ)2 = o(n), then

we have ∑
i Ti(yi − ȳ)√

nσy

·∼ N (0, 1).

Proof of Lemma D.1. By the Theorem 1 of Berry [1941], we have

dK

(∑
i Ti(yi − ȳ)√

nσy
,N (0, 1)

)
< Cmax

i

∣∣∣∣(yi − ȳ)√
nσy

∣∣∣∣ ,
where dK denotes the Kolmogorov distance between two distributions. If lim infn→∞ σy > 0 and
maxi(yi − ȳ)2 = o(n), then

max
i

∣∣∣∣yi − ȳ√
nσy

∣∣∣∣ = o(1).

The conclusion follows.

Proof of Theorem 1. First, we see that

var

(
1√
n

∑
i

Ti

(
ei(1)

r1
+

ei(0)

r0

))
=

1

n

∑
i

(
ei(1)

r1
+

ei(0)

r0

)2

=
n− 1

n
S2
r−1
1 e(1)+r−1

0 e(0)
.

By Lemma A.3, we have

S2
r−1
1 e(1)+r−1

0 e(0)
= r−1

1 S2
e(1) + r−1

0 S2
e(0) − S2

τe = σ2
adj.

Putting together, we get

var

(
1√
n

∑
i

Ti

(
ei(1)

r1
+

ei(0)

r0

))
= σ2

adj + o(1).

Then, by Lemma D.1, we see that under Assumptions 1-4,

1√
nσadj

∑
i

Ti

(
ei(1)

r1
+

ei(0)

r0

)
·∼ N (0, 1).

Recall that T̃i = Ti − r1. By Proposition C.3, it remains to show that for z ∈ {0, 1}

n−1/2
∑
i

Tisi(z) = oP(1), n−1/2
∑
[i,j]

T̃iT̃jAij(z) = oP(1).
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Noticing that
∑

iH
2
ii ≤

∑
iHii = p, we have

E
(
n−1/2

∑
i

Tisi(z)

)2

=
r1r0
n

∑
i

si(z)
2 ≤ r1r0

n

∑
i

H2
ii(Yi(z)− Ȳ (z))2

≤ r1r0
n

p∑
i=1

(Y(i)(z)− Ȳ (z))2 = O(n−1)o(n) = o(1),

which implies that

n−1/2
∑
i

Tisi(z) = oP(1).

Next, using that for i ̸= j ̸= k ̸= l,

ET̃ 2
i T̃j T̃k = 0, ET̃iT̃j T̃kT̃l = 0,

we can derive that

E
(
n−1/2

∑
[i,j]

T̃iT̃jAij(z)

)2

= n−1
∑
[i,j]

E(T̃iT̃j)
2
(
Aij(z)

2 +Aij(z)Aji(z)
)

=
(r1r0)

2

n

∑
[i,j]

(
Aij(z)

2 +Aij(z)Aji(z)
)
≤ 2(r1r0)

2

n

∑
[i,j]

Aij(z)
2

=
2(r1r0)

2

n

∑
[i,j]

H2
ij

(
Yj(z)− Ȳ (z)

)2 ≤ 2(r1r0)
2

n

∑
i

Hii

(
Yi(z)− Ȳ (z)

)2
≤ 2(r1r0)

2

n

p∑
i=1

(Y(i)(z)− Ȳ (z))2 = o(1).

Thus, by Chebyshev’s inequality, we have

n−1/2
∑
i

T̃iT̃jAij(z) = oP(1).

Then, the conclusion follows.

E The CLT of quadratic forms and the asymptotic normality of
τ̂db when p ≍ n

In this section, we study the asymptotic normality of τ̂db when p ≍ n and give the proof of
Theorem 2. The main intermediate step is to show that the Kolmogorov distance between the
normal distribution and the joint distribution of the linear and quadratic terms of τ̂db is negligible
(see Proposition E.3).

For a symmetric function vanishing on diagonals, define the influence of the i-th variable of f
by

Infi (f) :=
∑

i2,...,iq

f (i, i2, . . . , iq)
2 .
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if q ≥ 2 and Infi (f) := f (i)2 if q = 1. Denote

∥f∥ℓ2 :=

{ ∑
i1,...,iq

f (i1, . . . , iq)
2

}1/2

, M(f) := max
1≤i≤n

Infi(f).

For a random variable U , define its fourth-order cumulant κ4(U) := EU4 − 3(EU2)2. Set Wi in
Definition 1 in the main context as Wi = (Ti − r1)/(r1r0)

1/2, i ∈ [n]. With the decomposition in
Proposition C.3, we define Q := (Q1, Q2)

⊤ as

Q1 :=

√
r1r0√
n

∑
i

Wi

(
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

)
,

Q2 :=
r1r0√

n

∑
[i,j]

WiWj

(
−Aij(1)

r21
+

Aij(0)

r20

)
,

and it is easy to see that
√
n(τ̂db − τ̄) = Q1 +Q2 + oP(1). Moreover, we rewrite Q2 into the form

of a homogeneous sum

Q2 =
r1r0
2
√
n

∑
[i,j]

WiWj

(
−Aij(1)

r21
− Aji(1)

r21
+

Aij(0)

r20
+

Aji(0)

r20

)
.

Q1 and Q2 define two homogeneous sums

Q1 =
∑
i

f1(i)Wi, Q2 =
∑
[i,j]

f2(i, j)WiWj ,

with

f1(i) =

√
r1r0√
n

(
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

)
,

f2(i, j) =
r1r0
2
√
n

(
−Aij(1)

r21
− Aji(1)

r21
+

Aij(0)

r20
+

Aji(0)

r20

)
.

The following Proposition gives the variances of the linear and quadratic terms.

Proposition E.1. We have

var(Q1) =
n− 1

n
σ2
hd,l, var(Q2) =

n− 1

n
σ2
hd,q.

Proof of Proposition E.1. Using EWi = 0, EW 2
i = 1, and the independence between Wi’s, we

obtain that

var(Q1) =
∑
i

f1(i)
2 var(W1) =

∑
i

f1(i)
2

=
r1r0
n

∑
i

(
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

)2

=
n− 1

n
(r1r0)S

2
r−1
1 e(1)+r−1

1 s(1)+r−1
0 e(0)+r−1

0 s(0)
=

n− 1

n
σ2
hd,l,

43



where the last equation follows from Lemma A.3 with ai = ei(1) + si(1), bi = ei(0) + si(0).
Using

∑
j:j ̸=iH

2
ij = Hii −H2

ii and recalling the definition of Q, we obtain that

var(Q2) =
∑
[i,j]

(r1r0)
2

(
Aij(1)

r21
− Aij(0)

r20

)2

E(W 2
i W

2
j )

+
∑
[i,j]

(r1r0)
2

(
Aij(1)

r21
− Aij(0)

r20

)(
Aji(1)

r21
− Aji(0)

r20

)
E(W 2

i W
2
j )

=
(r1r0)

2

n

∑
[i,j]

H2
ij

(
Yi(1)

r21
− Yi(0)

r20

)(
Yj(1)

r21
− Yj(0)

r20

)
+
∑
[i,j]

H2
ij

(
Yi(1)

r21
− Yi(0)

r20

)
=

(r1r0)
2

n

∑
[i,j]

H2
ij

(
Yi(1)

r21
− Yi(0)

r20

)(
Yj(1)

r21
− Yj(0)

r20

)
+
∑
i

(Hii −H2
ii)

(
Yi(1)

r21
− Yi(0)

r20

)2


=
(r1r0)

2

n

∑
i

∑
j

Qij

(
Yi(1)

r21
− Yi(0)

r20

)(
Yj(1)

r21
− Yj(0)

r20

)

=
(r1r0)

2

n

∑
i

∑
j

Qij

(
Yi(1)− Ȳ (1)

r21
− Yi(0)− Ȳ (0)

r20

)(
Yj(1)− Ȳ (1)

r21
− Yj(0)− Ȳ (0)

r20

)
=

n− 1

n
σ2
hd,q,

where we used the fact that Q⊤1 = Q1 = 0.

Let G := (G1, G2)
⊤ be a normal approximation of (Q1, Q2), i.e.(

G1

G2

)
∼ N

(
0,

(
σ2
hd,l 0

0 σ2
hd,q

))
.

The following proposition shows the order of σ2
hd,l and σ2

hd,q.

Proposition E.2. If Assumptions 1 and 2 hold, then we have that

σ2
hd,l = O(1), σ2

hd,q = O(1).

Proof of Proposition E.2. Recall that B is defined as

B =

{(
I − 1

n
11⊤

)
−H +

(
I − 1

n
11⊤

)
diag{H}

}2

,

and σ2
hd,l and σ2

hd,q are defined as

σ2
hd,l = (r1r0)S

2
B, r−1

1 Y (1)+r−1
0 Y (0)

, σ2
hd,q = (r1r0)

2S2
Q, r−2

1 Y (1)−r−2
0 Y (0)

.

By sub-additivity and sub-multiplicativity of the l2-norm and the trivial bounds∥∥∥∥I − 1

n
11⊤

∥∥∥∥
2

≤ 1, ∥H∥2 ≤ 1,

44



we see that ∥B∥2 = O(1), which, combined with Assumptions 1 and 2, yields that σ2
hd,l = O(1).

For σ2
hd,q, we notice that

∥ diag(Q)∥2 = max
i

(Hii −H2
ii) ≤

1

4
= O(1).

Therefore, by Lemma A.7, we have

∥Q∥2 ≤ ∥diag(Q)∥2 + ∥ diag−(Q)∥2 = O(1),

which, combined with Assumption 1 and 2, yields that σ2
hd,q = O(1). This concludes the proof.

The following proposition shows that the Kolmogorov distance between (G1, G2) and (Q1, Q2)
is negligible.

Proposition E.3. Under Assumptions 1–3 and 6, we have that

sup
(x1,x2)⊤∈R2

|P(Q1 ≤ x1;Q2 ≤ x2)− P(G1 ≤ x1;G2 ≤ x2)| = δn

(
1 +

1

min{σhd,q, σhd,l}

)
,

for a deterministic parameter δn of order o(1).

Proof of Proposition E.3. For ease of presentation, we denote

gi := (r1r0)
1/2

(
ei(1)

r1
+

ei(0)

r0
+

si(1)

r1
+

si(0)

r0

)
,

yi := (r1r0)

(
−Yi(1)− Ȳ (1)

r21
+

Yi(0)− Ȳ (0)

r20

)
.

Therefore, we can rewrite that

f1(i) = n−1/2gi, f2(i, j) = (2
√
n)−1Hij(yi + yj).

By Theorem 2.1 of Koike [2022], we have

sup
(x1,x2)⊤∈R2

|P(Q1 ≤ x1;Q2 ≤ x2)− P(G1 ≤ x1;G2 ≤ x2)|

= C

(
δ0(Q)

1
3 + δ1(Q)

1
3 + max

1≤k≤2
(M (fk))

1/2

)(
1 +

1

min{σhd,q, σhd,l}

)
,

where C is a universal constant that does not depend on n and

δ0(Q) :=∥ cov(Q)− cov(G)∥∞,

δ1(Q) :=

(
|κ4 (Q1)|+

∑
i

Infi (f1)
2

)1/2

+

(
|κ4 (Q2)|+

∑
i

Infi (f2)
2

)1/2

+ ∥f1∥ℓ2

(
|κ4 (Q2)|+

∑
i

Infi (f2)
2

)1/4

.
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Now, we set

δn = C

(
δ0(Q)

1
3 + δ1(Q)

1
3 + max

1≤k≤2
(M (fk))

1/2

)
.

To conclude the proof, it suffices to show that δ0(Q), δ1(Q), max1≤k≤2M (fk) are all of order o(1).
By Proposition E.2, we have that

cov(Q1, Q2) = cov(G1, G2) = 0,

var(Q1)− σ2
hd,l =

n− 1

n
σ2
hd,l − σ2

hd,l = − 1

n
σ2
hd,l = o(1),

var(Q2)− σ2
hd,q =

n− 1

n
σ2
hd,q − σ2

hd,q = − 1

n
σ2
hd,q = o(1).

These estimates give that δ0(Q) = o(1). We then consider maxk∈{1,2}M (fk). We have that

max
i

|si(z)| < 2max
i

|Hii(Yi(z)− Ȳ (z))| < 2max
i

|Yi(z)− Ȳ (z)| = o(n1/2),

which, combined with Assumption 1 and 3, yields that maxi g
2
i = o(n) and maxi y

2
i = o(n). As a

consequence, we obtain that

M(f1) = max
i

Infi(f1) = max
i

f1(i)
2 = max

i
g2i /n = o(1),

M(f2) = max
i

Infi(f2) = max
i

∑
j

f2(i, j)
2(1− δij) = max

i

∑
j

H2
ij(yi + yj)

2(1− δij)/(4n)

≤ max
i

y2i
∑
j

H2
ij(1− δij)/n = O

(
max

i
y2i /n

)
= o(1).

Finally, we estimate δ1(Q). We first focus on terms relating to Q1 and f1. We see that∑
i

Infi(f1)
2 =

∑
i

f1(i)
4 =

∑
i

g4i /n
2 = max

i
g2i /n ·

∑
i

g2i /n = o
(∑

i

g2i /n
)
.

Then, using

1

n

∑
i

g2i = O

(
max

z

1

n

∑
i

(ei(z)
2 + s2i (z))

)
= O

(
max

z

1

n

∑
i

(Yi − Ȳ (z))2
)

= O(1),

we get that
∑

i Infi(f1)
2 = o(1) and

∥f1∥ℓ2 =

{∑
i

f1 (i)
2

}1/2

=

(∑
i

g2i /n

)1/2

= O(1). (22)

On the other hand, for κ4 (Q1), we have that

EQ4
1 =

∑
i

f1(i)
4EW 4

i + 3
∑
i ̸=j

f1(i)
2f1(j)

2E
(
W 2

i W
2
j

)
,

3
(
EQ2

1

)2
= 3

(∑
i

f1(i)
2EW 2

i

)2

= 3
∑
i

f1(i)
4
(
EW 2

i

)2
+ 3

∑
i ̸=j

f1(i)
2f1(j)

2EW 2
i · EW 2

j ,
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which yield that

κ4 (Q1) =
∑
i

f1(i)
4
[
EW 4

i − 3
(
EW 2

i

)2]
= κ4 (W1)

∑
i

f1(i)
4 = κ4 (W1)

∑
i

g4i /n
2

≤ κ4 (W1)

(
max

i
g2i

)∑
i

g2i /n
2 = o(1).

Next, we focus on terms relating to Q2 and f2. For Infi(f2)
2, using that (yi+ yj)

2 ≤ 2(y2i + y2j ),
we get

∑
i

Infi(f2)
2 = O

(∑
i

{∑
j

H2
ijy

2
i (1− δij)/n

}2

+
∑
i

{∑
j

H2
ijy

2
j (1− δij)/n

}2)
.

Expanding the above two terms, we get

∑
i

{∑
j

H2
ijy

2
j (1− δij)/n

}2

=
∑
[i1,i2]

H4
i1i2y

4
i1/n

2 +
∑

[i1...i3]

H2
i1i2H

2
i2i3y

2
i1y

2
i3/n

2 =: M11 +M12,

∑
i

{∑
j

H2
ijy

2
i (1− δij)/n

}2

=
∑
[i1,i2]

H4
i1i2y

4
i2/n

2 +
∑

[i1...i3]

H2
i1i2H

2
i2i3y

4
i2/n

2 =: M13 +M14.

First, we use Lemma A.6 and Lemma A.7 to get that

M11 = M13 =
∑
[i1,i2]

H4
i1i2y

4
i1/n

2 = tr
(
diag(y)2 diag−(Q) diag−(Q) diag(y)2

)
/n2

≤
∑
i

y4i /n
2 <

(
max

i
y2i

)∑
i

y2i /n
2 = o(1).

For M12, by repeatedly applying
∑

j:j ̸=iH
2
ij ≤ Hii ≤ 1, we get

M12 =
∑

[i1...i3]

H2
i1i2H

2
i2i3y

2
i1y

2
i3/n

2 ≤
(
max

i
y2i

) ∑
[i1...i3]

H2
i1i2H

2
i2i3y

2
i1/n

2

≤
(
max

i
y2i

) ∑
[i1,i2]

H2
i1i2y

2
i1/n

2 ≤
(
max

i
y2i

)∑
i

y2i /n
2 = o(1),

With a similar argument, we can bound M14 as

M14 =
∑

[i1...i3]

H2
i1i2H

2
i2i3y

4
i2/n

2 ≤
∑
i

y4i /n
2 = o(1).

Putting together, we see that ∑
i

Infi(f2)
2 = o(1).
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We next show that κ4 (Q2) = o(1). For ease of presentation, we abbreviate f2(i, j) as fij . Since
fij = fji, we see from some basic combinatorics that

EQ4
2 = E

( ∑
[i1,i2]

fi1i2Wi1Wi2

)4

= C1

∑
[i1,i2]

f4
i1i2EW

4
i1W

4
i2 + C2

∑
[i1...i3]

f2
i1i2fi2i3fi3i1EW

3
i1W

3
i2W

2
i3

+ C3

∑
[i1...i3]

f2
i1i2f

2
i2i3EW

2
i1W

4
i2W

2
i3 + C4

∑
[i1...i4]

fi1i2fi2i3fi3i4fi4i1EW 2
i1W

2
i2W

2
i3W

2
i4

+ 12
∑

[i1...i4]

f2
i1i2f

2
i3i4EW

2
i1W

2
i2W

2
i3W

2
i4 ,

where C1, . . . , C4 are universal constant that do not depend on n. On the other hand, we can
calculate that

3
(
EQ2

2

)2
= 3

{
E
( ∑

[i1,i2]

fi1i2Wi1Wi2

)2}2

= 3

(
2
∑
[i1,i2]

f2
i1i2EW

2
i1W

2
i2

)2

=C6

∑
[i1,i2]

f4
i1i2

(
EW 2

i1W
2
i2

)2
+ C7

∑
[i1...i3]

f2
i1i2f

2
i2i3

(
EW 2

i1W
2
i2

)2
+ 12

∑
[i1...i4]

f2
i1i2f

2
i3i4

(
EW 2

i1W
2
i2

)2
,

where C6 and C7 are universal constants that do not depend on n. Using the cancellation of the
term

∑
[i1...i4]

f2
i1i2

f2
i3i4

, we obtain that

κ4 (Q2) = O (|M21|+ |M22|+ |M23|+ |M24|) ,

where

M21 =
∑
[i1,i2]

f4
i1i2 , M22 =

∑
[i1...i3]

f2
i1i2fi2i3fi3i1 ,

M23 =
∑

[i1...i3]

f2
i1i2f

2
i2i3 , M24 =

∑
[i1...i4]

fi1i2fi2i3fi3i4fi4i1 .

We handle these terms one by one.
The term M21 can be written as a summation of terms of the form∑

[i1,i2]

H4
i1i2y

m1
i1

ym2
i2

/n2, (m1,m2) ∈ N2, m1 +m2 = 4.

(We adopt the convention that 0 ∈ N.) By Lemmas A.6 and A.7, for any (m1,m2) ∈ N2 with
m1 +m2 = 4,∑

[i1,i2]

H4
i1i2y

m1
i1

ym2
i2

/n2 = tr
(
diag(y)m1 diag−(Q) diag(y)m2 diag−(Q)

)
/n2 (23)

≤
∑
i

y4i /n
2 = o(1),
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which implies that |M21| = o(1).

By Cauchy-Schwarz inequality, we have that |M22| ≤ M23. The term M23 can be written as a
summation of terms of the form∑

[i1...i3]

H2
i1i2H

2
i2i3y

m1
i1

ym2
i2

ym3
i3

/n2, (m1,m2,m3) ∈ N3, m1 +m2 +m3 = 4.

We can find (m
(1)
1 ,m

(1)
2 ,m

(1)
3 ) ∈ N3 and (m

(2)
1 ,m

(2)
2 ,m

(2)
3 ) ∈ N3 such that mi = m

(1)
i + m

(2)
i ,

i = 1, 2, 3, and

m
(1)
1 +m

(1)
2 +m

(1)
3 = 2, m

(2)
1 +m

(2)
2 +m

(2)
3 = 2.

Then, applying the Cauchy-Schwartz inequality, we can obtain that∣∣∣∣ ∑
[i1...i3]

H2
i1i2H

2
i2i3y

m1
i1

ym2
i2

ym3
i3

∣∣∣∣ ≤( ∑
[i1...i3]

H2
i1i2H

2
i2i3y

2m
(1)
1

i1
y
2m

(1)
2

i2
y
2m

(1)
3

i3

)1/2( ∑
[i1...i3]

H2
i1i2H

2
i2i3y

2m
(2)
1

i1
y
2m

(2)
2

i2
y
2m

(2)
3

i3

)1/2

.

Mimicking the above proof for M12, by repeatedly applying
∑

j:j ̸=iH
2
ij ≤ Hii ≤ 1 and the condition

maxi y
2
i = o(n), we get that

1

n2

∑
[i1...i3]

H2
i1i2H

2
i2i3y

2m1
i1

y2m2
i2

y2m3
i3

= o(1), ∀(m1,m2,m3) ∈ N3,m1 +m2 +m3 = 2.

As a consequence, it implies that

1

n2

∑
[i1...i3]

H2
i1i2H

2
i2i3y

m1
i1

ym2
i2

ym3
i3

= o(1), ∀(m1,m2,m3) ∈ N3,m1 +m2 +m3 = 4, (24)

so we have |M23| = o(1).

Finally, M24 can be written as a summation of terms of the form∑
[i1...i4]

Hi1i2Hi2i3Hi3i4Hi4i1y
m1
i1

ym2
i2

ym3
i3

ym4
i4

/n2, (25)

for (m1,m2,m3,m4) ∈ N4 with m1 + m2 + m3 + m4 = 4. To bound this term, we estimate an
intermediate quantity ∑

i1 ̸=i2,i2 ̸=i3,i3 ̸=i4,i4 ̸=i1

Hi1i2Hi2i3Hi3i4Hi4i1y
m1
i1

ym2
i2

ym3
i3

ym4
i4

/n2,

and define

∆ :=

( ∑
i1 ̸=i2,i2 ̸=i3,i3 ̸=i4,i4 ̸=i1

−
∑

[i1...i4]

)
Hi1i2Hi2i3Hi3i4Hi4i1y

m1
i1

ym2
i2

ym3
i3

ym4
i4

/n2.
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We observe that

tr

[
4∏

v=1

(
diag(y)mv diag−(H)

)]
/n2

=
∑

i1 ̸=i2,i2 ̸=i3,i3 ̸=i4,i4 ̸=i1

Hi1i2Hi2i3Hi3i4Hi4i1y
m1
i1

ym2
i2

ym3
i3

ym4
i4

/n2,

and ∆ can be written as a summation of terms of the forms∑
[i1,i2]

H4
i1i2y

m′
1

i1
y
m′

2
i2

/n2, (m′
1,m

′
2) ∈ N2, m′

1 +m′
2 = 4,

and ∑
[i1...i3]

H2
i1i2H

2
i2i3y

m′
1

i1
y
m′

2
i2

y
m′

3
i3

/n2, (m′
1,m

′
2,m

′
3) ∈ N3, m′

1 +m′
2 +m′

3 = 4.

By Lemmas A.6 and A.7, we have

tr

[
4∏

v=1

(
diag(y)mv diag−(H)

)]
/n2 = O

(∑
i

y4i /n
2

)
= o(1).

On the other hand, by (23) and (24), we have ∆ = o(1). Putting together, we have that for all
(m1,m2,m3,m4) ∈ N4 with m1 +m2 +m3 +m4 = 4,∑

[i1...i4]

Hi1i2Hi2i3Hi3i4Hi4i1y
m1
i1

ym2
i2

ym3
i3

ym4
i4

/n2 = o(1), (26)

which yields that |M24| = o(1). Combining all the above estimates, we conclude that κ4 (Q2) = o(1).
In light of (22) and our bounds on κ4(Qk) and

∑
i Infi(fk)

2, k ∈ {1, 2}, there is δ1(Q) = o(1),
which concludes the proof.

The following proposition shows the marginal convergence of Q1 and Q2.

Proposition E.4. Assume Assumptions 1–3 holds. We have that

(i) if lim inf σ2
hd,l > 0, then Q1/σhd,l

d→ N (0, 1);

(ii) if lim inf σ2
hd,q > 0, then Q2/σhd,q

d→ N (0, 1).

Proof of Proposition E.4. By Theorem 1 of De Jong [1990], we have

Qk/ var(Qk)
1/2 d→ N (0, 1), k ∈ {1, 2},

provided that the following two conditions hold: (i) EQ4
k/(EQ2

k)
2 → 3; (ii) M(fk)/ var(Qk) → 0.

Moreover, by Proposition E.1, we have

var(Q1) = σ2
hd,l + o(1), var(Q2) = σ2

hd,q + o(1).

From the proof of Proposition E.3, we have seen that under Assumptions 1–3, κ4(Qk) → 0 and
M(fk) → 0 for k ∈ {1, 2}. If lim inf σ2

hd,l > 0 and k = 1, κ4(Q1) → 0 and M(f1) → 0 imply

conditions (i) and (ii); if lim inf σ2
hd,q > 0 and k = 2, then κ4(Q2) → 0 and M(f2) → 0 imply

conditions (i) and (ii). Thus, we conclude the proof.
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Proof of Theorem 2. Without loss of generality, we assume lim inf σ2
hd,l > 0. We split the entire

sequence into two subsequences. The first subsequence is such that all σhd,q’s are larger than δ
1/6
n ,

the second is such that all σhd,q’s are smaller than δ
1/6
n .

For the first subsequence, we have

1 +
1

min{σhd,q, σhd,l}
= O

(
1 + σ−1

hd,q + σ−1
hd,l

)
= O(1 + 1 + δ−1/6

n ) = O(δ−1/6
n ).

which yields that

sup
(x1,x2)⊤∈R2

|P(Q1 ≤ x1;Q2 ≤ x2)− P(G1 ≤ x1;G2 ≤ x2)| ≤ O(δnδ
−1/6
n ) = O(δ5/6n ).

We first show that given any x ∈ R,

P
(
Q1 +Q2

σhd
≤ x

)
≤ P

(
G1 +G2

σhd
≤ x

)
+ o(1).

Let ⌈·⌉ and ⌊·⌋ be the ceiling and floor functions, respectively. We decompose the left-hand side as

P
(
Q1 +Q2

σhd
≤ x

)

≤
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
Q1 +Q2

σhd
≤ x, (t− 1) · δ1/2n ≤ Q1 ≤ t · δ1/2n

)
+ P

(
|Q1| ≥ δ−1/6

n

)

≤
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
Q2 ≤ σhdx− (t− 1) · δ1/2n , (t− 1) · δ1/2n ≤ Q1 ≤ t · δ1/2n

)
+ P

(
|Q1| ≥ δ−1/6

n

)

≤
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
G2 ≤ σhdx− (t− 1) · δ1/2n , (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
+ P

(
|Q1| ≥ δ−1/6

n

)
+O

(
δ−2/3
n δ5/6n

)
≤

⌈δ−2/3
n ⌉∑

t=⌊−δ
−2/3
n ⌋

P
(
G1 +G2

σhd
≤ x, (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)

+

⌈δ−2/3
n ⌉∑

t=⌊−δ
−2/3
n ⌋

P
(
σhdx− t · δ1/2n ≤ G2 ≤ σhdx− (t− 1) · δ1/2n , (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
+ P

(
|Q1| ≥ δ−1/6

n

)
+O

(
δ1/6n

)
.

The second term on the right-hand side is of order

δ5/6n · δ−2/3
n = δ1/6n = o(1),
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since, by lim inf σhd,l > 0 and σhd,q > δ
1/6
n , we have that

P
(
σhdx− t · δ1/2n ≤ G2 ≤ σhdx− (t− 1) · δ1/2n , (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
= O

(
δ
1/2
n

σhd,q

δ
1/2
n

σhd,l

)
= O

(
δ5/6n

)
.

By Lemma E.2, we have

var(Q1)/σ
−1/6
n =

n− 1

n
σ2
hd,lσ

1/6
n = O(σ1/6

n ),

which, by Chebyshev’s inequality, implies that the third term on the right-hand side and P(|G1| ≥
δ
−1/6
n ) are both negligible. As a consequence, we have

P
(
Q1 +Q2

σhd
≤ x

)
≤

⌈δ−2/3
n ⌉∑

t=⌊−δ
−2/3
n ⌋

P
(
G1 +G2

σhd
≤ x, (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
+ o(1)

≤ P
(
G1 +G2

σhd
≤ x

)
+ P(|G1| ≥ δ−1/6

n ) + o(1)

≤ P
(
G1 +G2

σhd
≤ x

)
+ o(1).
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For the lower bound, we apply similar arguments as above to get that

P
(
Q1 +Q2

σhd
≤ x

)
≥

⌈δ−2/3
n ⌉∑

t=⌊−δ
−2/3
n ⌋

P
(
Q1 +Q2

σhd
≤ x, (t− 1) · δ1/2n ≤ Q1 ≤ t · δ1/2n

)

≥
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
Q2 ≤ σhdx− t · δ1/2n , (t− 1) · δ1/2n ≤ Q1 ≤ t · δ1/2n

)

≥
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
G2 ≤ σhdx− t · δ1/2n , (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
−O(δ1/6n )

≥
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
G1 +G2

σhd
≤ x, (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)

−
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
σhdx− t · δ1/2n ≤ G2 ≤ σhdx− (t− 1) · δ1/2n , (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
−O(δ1/6n )

≥
⌈δ−2/3

n ⌉∑
t=⌊−δ

−2/3
n ⌋

P
(
G1 +G2

σhd
≤ x, (t− 1) · δ1/2n ≤ G1 ≤ t · δ1/2n

)
+ o(1)

≥ P
(
G1 +G2

σhd
≤ x

)
− P(|G1| ≥ δ−1/6

n ) + o(1) ≥ P
(
G1 +G2

σhd
≤ x

)
+ o(1).

Putting together the upper and lower bounds, we get that the first subsequence satisfies

sup
x∈R

∣∣∣∣P(Q1 +Q2

σhd
≤ x

)
− P

(
G1 +G2

σhd
≤ x

)∣∣∣∣ = o(1).

We now consider the second subsequence where σhd,q’s are all smaller than δ
1/6
n which implies

that σhd/σhd,l = 1 + o(1) in this sequence. As a consequence, we have Q1/σhd = oP(1), which
means that

Q1 +Q2

σhd
=

Q1

σhd
+ oP(1).

By Proposition E.4, we have Q1/σhd,l
d→ N (0, 1). Together with Slutsky’s theorem, it implies that

(Q1 +Q2)/σhd
d→ N (0, 1).

In sum, we have that for each x ∈ R,∣∣∣∣P(Q1 +Q2

σhd
≤ x

)
− P

(
G1 +G2

σhd
≤ x

)∣∣∣∣ = o(1)

for both subsequences, showing that this estimate indeed holds for the whole sequence. This gives
that

Q1 +Q2

σhd

d→ N (0, 1),

and the conclusion then follows from Proposition C.3.
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F Inference

In this section, we study the validity of the proposed inference procedure. It includes the proofs
for Theorem 3 and Corollary 2. The comment of (10) follows from the following proposition.

Proposition F.1. We have

σ2
hd,l = (r1r0)S

2
B, r−1

1 Y (1)+r−1
0 Y (0)

.

Proof of Proposition F.1. Using Lemma A.3 with ai = ei(1) + si(1) and bi = ei(0) + si(0), we get

σ2
hd,l = (r1r0)S

2
r−1
1 e(1)+r−1

1 s(1)+r−1
0 e(0)+r−1

0 s(0)
.

Denote P = I − 1
n11

⊤. Observe that

(e1(z), . . . , en(z))
⊤ = (I −H)(Y1(z)− Ȳ (z), . . . , Yn(z)− Ȳ (z))⊤

= (P −H)(Y1(z)− Ȳ (z), . . . , Yn(z)− Ȳ (z))⊤,

and

(s1(z), . . . , sn(z))
⊤ = P diag(H)(Y1(z)− Ȳ (z), . . . , Yn(z)− Ȳ (z))⊤.

Then, applying Lemma A.2 with ai = r−1
1 ei(1) + r−1

1 si(1) + r−1
0 ei(0) + r−1

0 si(0), bi = r−1
1 Yi(1) +

r−1
0 Yi(0) and M = (P −H) + P diag(H), and noticing that

∑
i ai = 0, we obtain that

S2
r−1
1 e(1)+r−1

1 s(1)+r−1
0 e(0)+r−1

0 s(0)
= S2

M⊤M ,r−1
1 Y (1)+r−1

0 Y (0)
.

The conclusion then follows by the definition of B in (9).

Theorem 3 and Corollary 2 follow from the following Lemmas F.1–F.4.

Lemma F.1. Under Assumption 1, we have

cov(ZiZj , ZkZl) = O(n−1).

Proof of Lemma F.1. Observe that

cov(ZiZj , ZkZl) = EZiZjZkZl − E(ZiZj)E(ZkZl).

First, we have

EZiZjZkZl = P(Zi = 1, Zj = 1, Zk = 1, Zl = 1)

= P(Zl = 1)P(Zk = 1|Zl = 1)P(Zj = 1|Zk = 1, Zl = 1)P(Zi = 1|Zj = 1, Zk = 1, Zl = 1)

=
n1

n

n1 − 1

n− 1

n1 − 2

n− 2

n1 − 3

n− 3
.

On the other hand, we have

E(ZiZj)E(ZkZl) =

(
n1

n

n1 − 1

n− 1

)2

.
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In sum, under Assumption 1, we have that

cov(ZiZj , ZkZl) =
n1

n

n1 − 1

n− 1

n1 − 2

n− 2

n1 − 3

n− 3
−
(
n1

n

n1 − 1

n− 1

)2

=
n4
1

n(n− 1)(n− 2)(n− 3)
− n4

1

n2(n− 1)2
+O(n−1)

= n4
1

(
1

n(n− 1)(n− 2)(n− 3)
− 1

n2(n− 1)2

)
+O(n−1)

= n4
1O(n−5) +O(n−1) = O(n−1).

Let g2(1) ≥ . . . ≥ g2(n) and y2(1) ≥ . . . ≥ y2(n) be the ordered sequence of {gi}ni=1 and {yi}ni=1,
respectively.

Lemma F.2. Assume Assumption 1 holds and
∑

i y
2
i = O(n),

∑
i g

2
i = O(n), maxi g

2
i = o(n),

maxi y
2
i = o(n). For any symmetric matrix D with diagonal entries being 0 and ∥D∥2 < C, we

have

1

n

∑
[i,j]

DijyigjZiZj =
1

n

∑
[i,j]

Dijyigjr
2
1 + oP(1), (27)

and

1

n

∑
[i,j]

Dijyigj(1− Zi)(1− Zj) =
1

n

∑
[i,j]

Dijyigjr
2
0 + oP(1). (28)

Proof of Lemma F.2. We only prove (27), and (28) follows immediately by replacing Zi with 1−Zi.

For i ̸= j, using EZiZj = r1
n1−1
n−1 , we get

E
1

n

∑
[i,j]

DijyigjZiZj =
1

n

∑
[i,j]

Dijyigjr1
n1 − 1

n− 1
=
(
1 +O(n−1)

) 1
n

∑
[i,j]

Dijyigjr
2
1.

On the other hand, we have∣∣∣∣ 1n∑
[i,j]

Dijyigj

∣∣∣∣ ≤ (∑
i

y2i /n

)1/2(∑
i

g2i /n

)1/2

∥D∥2 = O(1), (29)

which implies that

E
1

n

∑
[i,j]

DijyigjZiZj =
1

n

∑
[i,j]

Dijyigjr
2
1 + o(1).

Thus, to conclude the proof using Chebyshev’s inequality, it suffices to show that

var

(∑
[i,j]

yigjDijZiZj

)
= o(n2). (30)
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Through direct calculation, we get that

var

(∑
[i,j]

yigjDijZiZj

)
= var(Z1Z2)

∑
[i1,i2]

(
C1y

2
i1g

2
i2D

2
i1i2 + C2yi1yi2gi1gi2D

2
i1i2

)
+ cov(Z1Z2, Z1Z3)

∑
[i1...i3]

(
C3Di1i2Di2i3g

2
i2yi1yi3 + C4Di1i2Di2i3gi2yi2yi1gi3 + C5Di1i2Di2i3y

2
i2gi1gi3

)
+ cov(Z1Z2, Z3Z4)

∑
[i1...i4]

C6Di1i2Di3i4yi1gi2yi3gi4

=: var(Z1Z2) (C1M1 + C2M2) + cov(Z1Z2, Z1Z3) (C3M3 + C4M4 + C5M5)

+ cov(Z1Z2, Z3Z4)C6M6,

where, Ci, i = 1, . . . , 6 are universal constants that do not depend on n. By Assumption 1 and
Lemma F.1, we have

var(Z1Z2) = O(1), cov(Z1Z2, Z1Z3) = O(1), cov(Z1Z2, Z3Z4) = O(n−1).

It remains to estimate the order of Mi, i = 1, . . . , 6.
By Lemma A.6, we have

M1 = tr
(
diag(y)2D diag(g)2D

)
≤ C2

∑
i

y2(i)g
2
(i) ≤ C2

(
max

i
g2i

)∑
i

y2i = o(n2).

Applying the Cauchy-Schwarz inequality, we also get |M2| ≤ M1 = o(n2).
For M3, let yD,i and gD,i be the i-th element of D(y1, . . . , yn)

⊤ and D(g1, . . . , gn)
⊤. We see that∑

i y
2
D,i = O(n) and

∑
i g

2
D,i = O(n) since ∥D∥2 < C. By repeatedly applying

∑
j∈[n]\iDijyj = yD,i

and
∑

j∈[n]\iDijgj = gD,i, we obtain that

M3 =
∑

[i1...i3]

Di1i2Di2i3g
2
i2yi1yi3 =

∑
[i1,i2]

Di1i2g
2
i2yi1yD,i2 −

∑
[i1,i2]

Di1i2Di2i1g
2
i2yi1yi1

=
∑
i1

g2i1y
2
D,i1 −

∑
[i1,i2]

D2
i1i2g

2
i2y

2
i1 =: M31 −M32.

For M31, it holds that

M31 ≤
(
max

i
g2i

)∑
i

y2D,i = o(n2).

For M32, we see that M32 = M1 = o(n2). Hence, there is M3 = o(n2).
For M4 and M5, we decompose them as

M4 =
∑
[i1,i2]

Di1i2gi2gD,i2yi1yi2 −
∑
[i1,i2]

Di1i2Di2i1gi2gi1yi1yi2

=
∑
i1

gi1gD,i1yD,i1yi1 −
∑
[i1,i2]

D2
i1i2gi2gi1yi1yi2 ,

M5 =
∑
[i1,i2]

Di1i2y
2
i2gi1gD,i2 −

∑
[i1,i2]

Di1i2Di2i1y
2
i2gi1gi1

=
∑
i1

y2i1g
2
D,i1 −

∑
[i1,i2]

D2
i1i2y

2
i2g

2
i1 .
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Using similar arguments as in the analysis of M3, we can show that M5 = o(n2). For M4, by
Cauchy-Schwarz inequality, we have(∑

i1

gi1gD,i1yD,i1yi1

)2

≤
(∑

i1

g2i1y
2
D,i1

)(∑
i1

g2D,i1y
2
i1

)
,

( ∑
[i1,i2]

D2
i1i2gi2gi1yi1yi2

)2

≤
( ∑

[i1,i2]

D2
i1i2y

2
i2g

2
i1

)2

,

which, combined with the arguments in the analysis of M3, yields that M4 = o(n2).
Finally, for M6, we see that

M6 −
( ∑

[i1,i2]

Di1i2yi1gi2

)2

= O (|M1|+ |M2|+ |M3|+ |M4|+ |M5|) = o(n2),

and we have shown in (29) that
1

n

∑
[i,j]

Dijyigj = O(1).

Thus, we have M6 = O(n2).
Putting together the above estimates, we obtain that

var

(∑
[i,j]

yigjDijZiZj

)
= O(1)o(n2) +O(1)o(n2) +O(n−1)O(n2) = o(n2),

which concludes the proof.

Lemma F.3. Assume Assumption 1 holds and
∑

i y
2
i = O(n),

∑
i g

2
i = O(n), maxi g

2
i = o(n). For

any sequence {ai}ni=1 with maxi |ai| < C, we have that

1

n

∑
i

aiyigiZi =
1

n

∑
i

aiyigir1 + oP(1).

Proof of Lemma F.3. It suffices to show that

var

(∑
i

aiyigiZi

)
= o(n2). (31)

Direct calculations give that

var

(∑
i

aiyigiZi

)
= var(Z1)

∑
i

a2i y
2
i g

2
i + cov(Z1, Z2)

∑
[i,j]

aiajyiyjgigj

=: var(Z1)M1 + cov(Z1, Z2)M2.

Under Assumption 1, we have that

var(Z1) = O(1), cov(Z1, Z2) = O(n−1).
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It remains to estimate the order of M1 and M2.
For M1, by maxi |ai| < C, maxi g

2
i = o(n) and

∑
i y

2
i = O(n), we have∑

i

a2i y
2
i g

2
i ≤ C2

(
max

i
g2i

)∑
i

y2i = o(n2).

For M2, we have that

M2 =
∑
[i,j]

aiajyiyjgigj ≤
(∑

i

aiyigi

)2

.

By Cauchy-Schwarz inequality, there is(∑
i

aiyigi

)2

≤ max
i

a2i

(∑
i

y2i

)(∑
i

g2i

)
= O(n2),

which implies that M2 = O(n2). Thus, we have

var

(∑
i

aiyigiZi

)
= O(1)o(n2) + o(n−1)O(n2) = o(n2),

which concludes the proof.

Lemma F.4. Assume Assumptions 1-3 hold. For any symmetric matrix D with ∥ diag−(D)∥2 < C
and ∥diag(D)∥2 < C, we have that for z ∈ {0, 1},

s2
diag−(D),Y (z)

= S2
diag−(D),Y (z)

+ oP(1), s2diag(D),Y (z) = S2
diag(D),Y (z) + oP(1),

sdiag−(D),Y (1),Y (0) = Sdiag−(D),Y (1),Y (0) + oP(1).

Proof of Lemma F.4. We can write that

s2
diag−(D),Y (z)

=
1

nr2z

∑
i ̸=j:Zi=z,Zj=z

Dij(Yi(z)− Ȳz)(Yj(z)− Ȳz)

= M1 +M2 +M3,

where

M1 =
1

nr2z

∑
i ̸=j:Zi=z,Zj=z

Dij(Yi(z)− Ȳ (z))(Yj(z)− Ȳ (z)),

M2 = 2(Ȳ (z)− Ȳz)
1

nr2z

∑
i ̸=j:Zi=z,Zj=z

Dij(Yi(z)− Ȳ (z)),

M3 = 2(Ȳ (z)− Ȳz)
2 1

nr2z

∑
i ̸=j:Zi=z,Zj=z

Dij .

Applying Lemma F.2 with fi = gi = Yi(z)− Ȳ (z), we get

M1 =
1

n

∑
i ̸=j

Dij(Yi(z)− Ȳ (z))(Yj(z)− Ȳ (z)) + oP(1).
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Applying Lemma A.5 and Lemma F.2 with fi = Yi(z)− Ȳ (z) and gi = 1, we get

M2 = 2(Ȳ (z)− Ȳz)OP(1) = oP(1).

Applying Lemma A.5 and Lemma F.2 with fi = gi = 1, we get

M2 = (Ȳ (z)− Ȳz)
2OP(1) = oP(1).

These results together imply that

s2
diag−(D),Y (z)

=
1

n

∑
i ̸=j

Dij(Yi(z)− Ȳ (z))(Yj(z)− Ȳ (z)) + oP(1)

=
(
1 +O(n−1)

)
S2
diag−(D),Y (z)

+ oP(1) = S2
diag−(D),Y (z)

+ oP(1).

For sdiag−(D),Y (1),Y (0), we have

sdiag−(D),Y (1),Y (0) =
1

nr1r0

∑
i ̸=j

Dij(Yi(1)− Ȳ1)(Yj(0)− Ȳ0)Zi(1− Zj) = M4 +M5,

where

M4 = − 1

nr1r0

∑
i ̸=j

Dij(Yi(1)− Ȳ1)(Yj(0)− Ȳ0)ZiZj ,

M5 =
1

nr1r0

∑
i ̸=j

Dij(Yi(1)− Ȳ1)(Yj(0)− Ȳ0)Zi.

Similarly, applying Lemma F.2, we get that

M4 = − r1
nr0

∑
i ̸=j

Dij(Yi(1)− Ȳ1)(Yj(0)− Ȳ0) + oP(1).

The term M5 is decomposed as M5 = M51 +M52 +M53 +M54, where

M51 =
1

nr1r0

∑
i ̸=j

Dij(Yi(1)− Ȳ (1))(Yj(0)− Ȳ (0))Zi,

M52 = (Ȳ (1)− Ȳ1)
1

nr1r0

∑
i ̸=j

Dij(Yj(0)− Ȳ (0))Zi,

M53 = (Ȳ (0)− Ȳ0)
1

nr1r0

∑
i ̸=j

Dij(Yi(1)− Ȳ (1))Zi,

M54 = (Ȳ (0)− Ȳ0)(Ȳ (1)− Ȳ1)
1

nr1r0

∑
i ̸=j

DijZi.

Applying Lemma F.3 with yi =
∑

j∈[n]\iDij(Yj(0)− Ȳ (0)), gi = Yi(1)− Ȳ (1), and ai = 1, we get

M51 =
1

nr1r0

∑
i ̸=j

Dij(Yi(1)− Ȳ (1))(Yj(0)− Ȳ (0))Zi

=
1

nr0

∑
i ̸=j

Dij(Yi(1)− Ȳ (1))(Yj(0)− Ȳ (0)) + oP(1).
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Applying Lemma F.3 with yi =
∑

j∈[n]\iDij(Yj(0)− Ȳ (0)), gi = 1, and ai = 1, we get

M52 = (Ȳ (1)− Ȳ1)OP(1) = oP(1).

Applying Lemma F.3 with yi =
∑

j∈[n]\iDij , gi = (Yi(1)− Ȳ (1)), and ai = 1, we get

M53 = (Ȳ (0)− Ȳ0)OP(1) = oP(1).

Applying Lemma F.3 with yi =
∑

j∈[n]\iDij , gi = 1, and ai = 1, we get

M53 = (Ȳ (0)− Ȳ0)(Ȳ (1)− Ȳ1)OP(1) = oP(1).

These results together imply that

sdiag−(D),Y (1),Y (0) =
1

n

∑
i ̸=j

Dij(Yi(1)− Ȳ1)(Yj(0)− Ȳ0) + oP(1)

= Sdiag−(D),Y (1),Y (0) + oP(1).

Finally, for s2diag(D),Y (z), we have

s2diag(D),Y (z) =
1

nz

∑
i:Zi=z

Dii(Yi(z)− Ȳz)
2 = M6 +M7 +M8,

where

M6 =
1

nz

∑
i:Zi=z

Dii(Yi(z)− Ȳ (z))2,

M7 = 2(Ȳ (z)− Ȳz)
1

nz

∑
i:Zi=z

Dii(Yi(z)− Ȳ (z)),

M8 = (Ȳ (z)− Ȳz)
2 1

nz

∑
i:Zi=z

Dii.

Applying Lemma F.3 with yi = gi = Yi(z)− Ȳ (z) and ai = Dii, we get

M6 =
1

n

∑
i:Zi=z

Dii(Yi(z)− Ȳ (z))2 + oP(1).

Applying Lemma A.5 and Lemma F.3 with yi = 1, gi = Yi(z)− Ȳ (z), and ai = Dii, we get

M7 = 2(Ȳ (z)− Ȳz)OP(1) = oP(1).

Applying Lemma A.5 and Lemma F.3 with yi = 1, gi = 1, and ai = Dii, we get

M8 = (Ȳ (z)− Ȳz)
2OP(1) = oP(1).

These results together imply that

s2diag(D),Y (z) =
1

n

∑
i

Dii(Yi(z)− Ȳz)
2 + oP(1) = S2

diag(D),Y (z) + oP(1).

To sum up, we have concluded the proof.
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Now, we are ready to prove Theorem 3. The also proof includes the technical details of the
comment of (13).

Proof of Theorem 3. Recall that we denote P = I− 1
n11

⊤. By Lemma A.7 and the fact 0 ≤ Hii ≤ 1,
there is

∥ diag(⋆)∥2 = O(1), ∥diag−(⋆)∥2 = O(1), ⋆ ∈ {H,Q,P }.

We then expand B as

B = (P −H + P diag(H))⊤ (P −H + P diag(H))

= P −H + diag(H)P diag(H) + (P −H) diag(H) + diag(H)(P −H).

Therefore, we have

diag(B) = diag(P )− diag(H) + diag(H) diag(P ) diag(H)

+ (diag(P )− diag(H)) diag(H) + diag(H)(diag(P )− diag(H)),

diag−(B) = diag−(P )− diag−(H) + diag(H) diag−(P ) diag(H)

+ (diag−(P )− diag−(H)) diag(H) + diag(H)(diag−(P )− diag−(H)).

By sub-additivity and sub-multiplicativity of the l2-norm, we have

∥diag(B)∥2 = O(1), ∥ diag−(B)∥2 = O(1).

Therefore, for ⋆ ∈ {H,Q,B,P }, under Assumptions 1-3, we can derive that

s2diag(⋆),Y (z) = S2
diag(⋆),Y (z) + oP(1) s2

diag−(⋆),Y (z)
= S2

diag−(⋆),Y (z)
+ oP(1),

sdiag−(⋆),Y (1),Y (0) = Sdiag−(⋆),Y (1),Y (0) + oP(1). (32)

by using Lemma F.4. Thus, we have proved the consistency of those empirical estimators of
covariances.

Next, we prove that

I3 =
∑

z∈{0,1}

(
S2
diag(B),Y (z) − S2

diag(Q),Y (z) − S2
diag−(H),Y (z)

)
+ 2Sdiag−(H),Y (1),Y (0) − S2

diag(H),Y (1)−Y (0) − S2
e(1)−e(0) +O

(
n−1

)
. (33)

Some direct calculations give that

Bii = 1− 1

n
+

(
1− 2

n

)
Hii −

(
1 +

1

n

)
H2

ii,

which implies that Bii −Qii = 1 +O(n−1).
Applying the equation

2Sdiag(D),Y (1),Y (0) =
∑

z∈{0,1}

S2
diag(D),Y (z) − S2

diag(D),Y (1)−Y (0),

with D ∈ {B,Q,H} and the equation

S2
Y (1)−Y (0) = S2

H,Y (1)−Y (0) + S2
e(1)−e(0),
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we obtain that

I3 = 2Sdiag(B),Y (1),Y (0) − 2Sdiag(Q),Y (1),Y (0)

=
∑

z∈{0,1}

(
S2
diag(B),Y (z) − S2

diag(Q),Y (z)

)
− S2

diag(B),Y (1)−Y (0) + S2
diag(Q),Y (1)−Y (0)

=
∑

z∈{0,1}

(
S2
diag(B),Y (z) − S2

diag(Q),Y (z)

)
− S2

Y (1)−Y (0) +O
(
n−1

)
=

∑
z∈{0,1}

(
S2
diag(B),Y (z) − S2

diag(Q),Y (z)

)
− S2

H,Y (1)−Y (0) − S2
e(1)−e(0) +O

(
n−1

)
=

∑
z∈{0,1}

(
S2
diag{B},Y (z) − S2

diag{Q},Y (z) − S2
diag−{H},Y (z)

)
+ 2Sdiag−{H},Y (1),Y (0) − S2

diag{H},Y (1)−Y (0) − S2
e(1)−e(0) +O

(
n−1

)
.

We replace all terms in the formula of σ2
hd with their empirical estimators, except for the term

−S2
diag{H},Y (1)−Y (0) − S2

e(1)−e(0),

which constitutes the bias of σ̂2
hd.

Using (32), we get that under Assumptions 1-3,

σ̂2
hd = σ2

hd + S2
diag{H},Y (1)−Y (0) + S2

e(1)−e(0) + oP(1).

It remains to show that if Assumption 5 holds, we have

σ2
hd + S2

diag{H},Y (1)−Y (0) + S2
e(1)−e(0) = σ2

adj + S2
e(1)−e(0) + o(1).

Comparing the left-hand and right-hand sides of the above formula with the formulas of σ2
hd and

σ2
adj, we find that it suffices to prove that

S2
diag{H},Y (1)−Y (0) = o(1), S2

s(z) = o(1).

Under Assumption 5, using
∑

iHii = p, we obtain that

S2
diag{H},Y (1)−Y (0) ≤

2

n− 1

∑
i

Hii(Yi(1)− Ȳ (1))2 +
2

n− 1

∑
i

Hii(Yi(0)− Ȳ (0))2

≤ 2

n− 1

p∑
i=1

(Y(i)(1)− Ȳ (1))2 +
2

n− 1

p∑
i=1

(Y(i)(0)− Ȳ (0))2 = o(1).

On the other hand, using
∑

iH
2
ii ≤

∑
iHii = p, we obtain that

S2
s(z) ≤

1

n− 1

∑
i

H2
ii(Yi(z)− Ȳ (z))2 ≤ 1

n− 1

p∑
i=1

(Y(i)(z)− Ȳ (z))2 = o(1).

The conclusion then follows.

Proof of Corollary 2. In the proof of Theorem 3, we have derived that (recall (33))

I3 =
∑

z∈{0,1}

(
S2
diag(B),Y (z) − S2

diag(Q),Y (z)

)
− S2

Y (1)−Y (0) +O
(
n−1

)
.

Then, the conclusion follows by replacing all terms with their empirical estimators except for
S2
Y (1)−Y (0) and by using a proof similar to that of Theorem 3.
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G Justification of assumptions

In this section, we prove Propositions 1–3, which provide some justifications of our assumptions.
For the proof of Proposition 1, we will use the classical Bernstein inequality.

Lemma G.1 (Bernstein inequality). Let X1, . . . , Xn be independent centered random variables.
Suppose that |Xi| ≤ M almost surely for all i. Then, for all t > 0, we have that

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2∑n
i=1 E

[
X2

i

]
+ 1

3Mt

)
.

Proof of Proposition 1. Fix z ∈ {0, 1}. For ease of presentation, we denote Yi(z) − EYi(z) by Ui

and Y(i)(z) − EYi(z) by U(i). By definition, (U(1) − Ū)2 ≥ (U(2) − Ū)2 ≥ . . . ≥ (U(n) − Ū)2. We
further define U2

<1> ≥ . . . ≥ U2
<n> as the ordered sequence of {U2

i }ni=1. Then, we have that

p∑
i=1

(Y(i)(z)− Ȳ (z))2 =

p∑
i=1

(U(i) − Ū)2 ≤ 2pŪ2 + 2

p∑
i=1

U2
(i) ≤ 2pŪ2 + 2

p∑
i=1

U2
<i>.

Since EŪ = 0 and var(Ū) = var(U1)/n = O(n−1), by Chebyshev’s inequality, we have that

P(pŪ2 ≥ cn1) ≤
var(Ū)p

cn1
= var(U1)

p

ncn1
.

Thus, choosing cn1 = (p/n)1/2 = o(1), we get that with probability 1− (p/n)1/2 = 1− o(1),

pŪ2 < cn1.

It remains to show that there exists cn2 → 0 such that

P

(
p∑

i=1

U2
<i> ≥ cn2

)
= o(1).

Note
∑p

i=1 U
2
<i> is increasing in p, so in the following proof, we assume that p → ∞ without loss

of generality.
Now, we consider the following two cases for the distribution of U2

1 :

(1) U2
1 is bounded almost surely, i.e., there exists an M > 0 such that

P(U2
1 ≥ M) = 0.

(2) U2
1 is unbounded, i.e., for any M > 0, we have

P(U2
1 ≥ M) > 0.

In case (1), we have that almost surely,

1

n

p∑
i=1

U2
<i> < pM/n = o(1),
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in which case we can choose cn2 = pM/n.

On the other hand, suppose case (2) holds. Then, we define the upper quantiles of U1 as

Qa := sup{M ∈ R | P(U2
1 ≥ M) ≥ a}, a > 0.

By definition, P(U2
1 ≥ Qa) ≥ a and Qa → ∞ as a → 0. For any cn2 > 0 and α = p/n, we have

P

(
p∑

i=1

U2
<i>/n ≥ cn2

)

≤ P

(∑
i

I(U2
i ≥ Q2α) < p

)
+ P

(
p∑

i=1

U2
<i>/n ≥ cn2,

∑
i

I(U2
i ≥ Q2α) ≥ p

)

≤ P

(∑
i

I(U2
i ≥ Q2α) < p

)
+ P

(
n∑

i=1

U2
i I(U

2
i ≥ Q2α)/n ≥ cn2

)
=: P(E1) + P(E2).

We next deal with the events E1 and E2, respectively.
For E1, let e := P(U2

i ≥ Q2α) ≥ 2α. Then, we apply Bernstein’s inequality with Xi = e−I(U2
i ≥

Q2α), t = ne/2, EX2
i < e, and |Xi| < 2 to get that∑

i

I(U2
i ≥ Q2α) ≥ ne/2 ≥ nα = p

holds with probability at least

1− exp

(
− 3

32
ne

)
≥ 1− exp

(
−3p

16

)
= 1− o(1).

This implies that P(E1) = o(1).

For E2, using Markov’s inequality, we get that

P

(
n∑

i=1

U2
i I(U

2
i ≥ Q2α)/n ≥ cn2

)
≤ 1

cn2
EU2

i I(U
2
i ≥ Q2α).

Since Q2α → ∞ as α → 0 and EU2
i < ∞, we have EU2

i I(U
2
i ≥ Q2α) → 0. Thus, we can choose

cn2 =
[
EU2

i I(U
2
i ≥ Q2α)

]1/2
= o(1) such that P(E2) = cn2 → 0.

In sum, we have proved that with probability 1− o(1),

p∑
i=1

(Y(i)(z)− Ȳ (z))2 < 2cn1 + 2cn2 = o(1).

Hence, the conclusion follows.

Proof for Corollary 1. For simplicity of notations, we denote by Ỹi(z) := Yi(z)−Ȳ (z). By definition
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and Proposition F.1, we have

σ2
hd,l =

1

(n− 1)(r1r0)

∑
i

(r0si(1) + r0ei(1) + r1si(0) + r1ei(0))
2 , (34)

σ2
hd,q =

(r1r0)
2

n− 1

∑
[i,j]

H2
ij

(
Ỹi(1)

r21
− Ỹi(0)

r20

)(
Ỹj(1)

r21
− Ỹj(0)

r20

)

+
(r1r0)

2

n− 1

∑
i

(Hii −H2
ii)

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

. (35)

Note σ2
hd,l ≥ 0 and σ2

hd,q ≥ 0, since both of them are variances of certain random variables. We
first prove that under Assumption 7,∑

i

(
si(z)− αỸi(z)

)2
= o(n). (36)

Applying the inequality
∑

i(ai − ā)2 ≤
∑

i a
2
i with ai = (Hii − α)Ỹi(z), we get that∑

i

(
si(z)− αỸi(z)

)2
=
∑
i

(ai − ā)2 ≤
∑
i

a2i =
∑
i

(Hii − α)2Ỹi(z)
2,

where the right-hand side is bounded by∑
i

(Hii − α)2Ỹi(z)
2 ≤ max

i
|Hii − α|2 ·

∑
i

Ỹi(z)
2 = o(n)

when maxi |Hii − α| = o(1) and
∑

i Ỹi(z)
2 = O(n), or bounded by∑

i

(Hii − α)2Ỹi(z)
2 ≤

(∑
i

|Ỹi(z)|2+η

) 2
2+η
(∑

i

|Hii − α|
2(2+η)

η

) η
2+η

<

(∑
i

|Ỹi(z)|2+η

) 2
2+η
(∑

i

|Hii − α|2
) η

2+η

= o(n) (37)

when
∑

i |Hii −α|2 = o(n) and
∑

i |Ỹi(z)|2+η = O(n). In the derivation of (37), the first inequality
uses Hölder’s inequality, while the second inequality is due to maxi |Hii − α| < 1. In either case,
we have proved (36), which implies that replacing si(z) with αỸi(z) in the formula of σ2

hd,l leads to
a negligible difference, i.e.,

σ2
hd,l =

1

(n− 1)(r1r0)

∑
i

{
r0αỸi(1) + r0ei(1) + r1αỸi(0) + r1ei(0)

}2
+ o(1).

We denote di(z) := Ỹi(z)− ei(z). Notice that
∑

i ei(z)di(z
′) = 0 for z, z′ ∈ {0, 1} and

R2
∑
i

(
r0Ỹi(1) + r1Ỹi(0)

)2
=
∑
i

(r0di(1) + r1di(0))
2 ,

(1−R2)
∑
i

(
r0Ỹi(1) + r1Ỹi(0)

)2
=
∑
i

(r0ei(1) + r1ei(0))
2 ,

σ2
cre =

1

(n− 1)(r1r0)

∑
i

(
r0Ỹi(1) + r1Ỹi(0)

)2
.
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With these identities, we derive that

σ2
hd,l =

1

(n− 1)(r1r0)

∑
i

(r0(1 + α)ei(1) + r1(1 + α)ei(0) + r0αdi(1) + r1αdi(0))
2 + o(1)

=
1

(n− 1)(r1r0)

[
(1 + α)2

∑
i

(r0ei(1) + r1ei(0))
2 + α2

∑
i

(r0di(1) + r1di(0))
2

]
+ o(1)

=
[
(1 + α)2 − (1 + 2α)R2

]
σ2
cre + o(1).

Therefore, we have

σ2
hd ≥ σ2

hd,l =
[
(1 + α)2 − (1 + 2α)R2

]
σ2
cre + o(1), (38)

which gives the lower bound on σ2
hd.

For the upper bounds on σ2
hd and σ2

hd,q, applying the Cauchy-Schwarz inequality and the identity∑
j H

2
ij = (H2)ii = Hii, we get that

∑
[i,j]

H2
ij

(
Ỹi(1)

r21
− Ỹi(0)

r20

)(
Ỹj(1)

r21
− Ỹj(0)

r20

)
≤
∑
[i,j]

H2
ij

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

=
∑
i

(Hii −H2
ii)

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

.

Plugging it into (35) yields that

σ2
hd,q ≤

2(r1r0)
2

n− 1

∑
i

(Hii −H2
ii)

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

. (39)

Now, the upper bounds on σ2
hd and σ2

hd,q follows immediately from the estimates

∑
i

(Hii − α)

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

= o(n),
∑
i

(H2
ii − α2)

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

= o(n).

It suffices to prove that under Assumption 7,

M1 :=
∑
i

|Hii − α|Ỹi(z)2 = o(n), M2 :=
∑
i

|H2
ii − α2|Ỹi(z)2 = o(n). (40)

for z ∈ {0, 1}.
When maxi |Hii − α| = o(1) and

∑
i Ỹi(z)

2 = O(n), M1 is bounded as

max
i

|Hii − α| ·
∑
i

Ỹi(z)
2 = o(n).
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When
∑

i |Hii − α|2 = o(n) and
∑

i |Ỹi(z)|2+η = O(n), M1 is bounded as

(∑
i

|Ỹi(z)|2+η′
) 2

2+η′
(∑

i

|Hii − α|
2+η′
η′

) η′
2+η′

≤
(∑

i

|Ỹi(z)|2+η′
) 2

2+η′
(∑

i

|Hii − α|2
) η′

2+η′

≤ n
2

2+η′

(∑
i

|Ỹi(z)|2+η/n

) 2
2+η (∑

i

|Hii − α|2
) η′

2+η′

= o(n),

by using Hölder’s inequality in the first two steps, where η′ ∈ (0, η) is chosen to be a small constant
such that (2+ η′)/η′ > 2. To sum up, under Assumption 7, we have M1 = o(n). The bound on M2

then follows easily:

M2 ≤ max
i

|Hii + α| ·
∑
i

|Hii − α|Ỹi(z)2 ≤ 2M1 = o(n).

Finally, using (39) and (40), we obtain

σ2
hd,q ≤

2(r1r0)
2

n− 1

∑
i

(α− α2)

(
Ỹi(1)

r21
− Ỹi(0)

r20

)2

+ o(1)

= 2(r1r0)
2α(1− α)S2

r−2
1 Y (1)−r−2

0 Y (0)
+ o(1).

Together with (38), it concludes the proof.

For the proof of Proposition 3, we need to use the following lemma, which is an i.i.d. version of
Theorem 2 in Whittle [1960].

Lemma G.2. Let ξ = (ξ1, . . . , ξn) be a random vector with centered i.i.d. entries. Let A be an
arbitrary deterministic matrix. For any s ≥ 2, there exists a constant C(s) depending on s such
that

E
∣∣∣ξ⊤Aξ − E(ξ⊤Aξ)

∣∣∣s ≤ C(s)
(
E|ξ1|2s

)1/2 (∑
i,j

|Aij |2
)s/2

.

The next lemma follows from a simple calculation.

Lemma G.3. Let ξ = (ξ1, . . . , ξn) be a random vector with centered i.i.d. entries. Let A be an
arbitrary deterministic matrix. Then, we have

E(ξ⊤Aξ) = tr(A)Eξ21 .

Proof of Lemma G.3. By the mean zero and i.i.d. conditions for the entries of ξ, we have

E(ξ⊤Aξ) =
∑
[i,j]

E(ξiξjAij) +
∑
i

E(ξ2iAii) = 0 + (Eξ21)
∑
i

EAii = tr(A)Eξ21 .

This concludes the proof.
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Proof of Proposition 3. We observe that

S2
τ − S2

e(1)−e(0) − S2
diag{H},Y (1)−Y (0) = S2

H,τ − S2
diag{H},Y (1)−Y (0). (41)

Through a direct calculation, we can write S2
H,τ as

S2
H,τ =

1

n− 1

{
(ε(1)− ε(0))⊤H (ε(1)− ε(0)) + (β1 − β0)

⊤X⊤PX (β1 − β0)

+ 2 (ε(1)− ε(0))⊤PX (β1 − β0)

=: M1 +M2 + 2M3,

where we denote ε(z) = (ε1(z), . . . , εn(z))
⊤, P = I − 1

n11
⊤, and X = (X1, . . . ,Xn)

⊤. We next
estimate the terms Mi, i = 1, 2, 3, one by one.

For M1, applying Lemmas G.2 and G.3 with s = 2, A = H/(n− 1), and ξi = εi(1)− εi(0), and
using the independence between H and ε(z), we obtain that

E(M1|H) = EM1 =
tr(H)

n− 1
var(ε1(1)− ε1(0)) =

p

n− 1

(
σ2
ε(1) + σ2

ε(0)

)
= α

(
σ2
ε(1) + σ2

ε(0)

)
+O(n−1),

with σ2
ε(z), z ∈ {0, 1}, denoting the variance of ε1(z), and that

E
(
|M1 − E(M1|H)|2

∣∣H) ≤ C(2)
(
Eξ41

)1/2 1

(n− 1)2

∑
i,j

H2
ij

= C(2)
(
Eξ41

)1/2 p

(n− 1)2
= O(n−1).

Thus, by choosing cn1 =
[
C(2)(Eξ41)1/2p(n− 1)−2

]1/3
= o(1), we have

P
(
|M1 − EM1| ≥ cn1

∣∣H) = P
(
|M1 − E(M1|H)| ≥ cn1

∣∣H)
≤ c−2

n1E
[
|M1 − E(M1|H)|2

∣∣H] ≤ cn1.

Then, using the law of total expectation, we obtain that

P
(
|M1 − EM1| ≥ cn1

)
≤ cn1 = o(1).

For M2, applying Lemma G.2 with s = 2, A = P /(n − 1), and ξi = X⊤
i (β1 − β0), we obtain

that

EM2 =
tr(P )

n− 1
E
∣∣X⊤

1 (β1 − β0)
∣∣2 = ∥O⊤(β1 − β0)∥22.

Notice that due to the condition E|X⊤
1 βz|4 < C, z ∈ {0, 1}, we have

∥O⊤βz∥22 = E|X⊤
1 βz|2 ≤

(
E|X⊤

1 βz|4
)1/2

≤ C1/2. (42)

Next, applying Lemma G.3, we obtain that

E|M2 − EM2|2 ≤ C(2)
(
Eξ41

)1/2 1

(n− 1)2

∑
i,j

P 2
ij

= C(2)
(
Eξ41

)1/2
(n− 1)−1 = O(n−1).
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Hence, by choosing cn2 =
[
C(2)(Eξ41)1/2(n− 1)−1

]1/3
= o(1), we have

P
(
|M2 − EM2| ≥ cn2

)
≤ cn2 = o(1).

For M3, we observe that EM3 = 0 due to the independence between X and ε(z). Denoting
ξ = (ξ1, . . . , ξn) with ξi = X⊤

i (β1 − β0), we obtain that

EM2
3 = E

[
1

n− 1
(ε(1)− ε(0))Pξ

]2
= (n− 1)−2

(
σ2
ε(1) + σ2

ε(0)

)
E(ξ⊤Pξ)

= (n− 1)−1
(
σ2
ε(1) + σ2

ε(0)

)
EM2 = O(n−1).

where we used P 2 = P and (42). Then, we choose cn3 = (EM2
3 )

1/3 = o(1) such that

P(|M3| ≥ cn3) < c−2
n3EM

2
3 = cn3 = o(1).

To sum up, we have shown that with probability 1− o(1),∣∣S2
H,τ − ES2

H,τ

∣∣ ≤ cn1 + cn2 + 2cn3 = o(1), (43)

where

ES2
H,τ = α

(
σ2
ε(1) + σ2

ε(0)

)
+ ∥O⊤(β1 − β0)∥22 +O(n−1).

Next, we handle S2
diag{H},Y (1)−Y (0). It is easy to see that

|S2
diag{H},Y (1)−Y (0) − αS2

Y (1)−Y (0)| < max
i

|Hii − α| · S2
Y (1)−Y (0). (44)

By Proposition 2, we have that with probability 1− o(1),

max
i

|Hii − α| < cn4 := n−δ, (45)

for some constant δ ∈ (0, η
8+2η ). For S2

Y (1)−Y (0), applying Lemmas G.2 and G.3 with s = 2,

A = P /(n− 1) and ξi = (Yi(1)− Yi(0))− (µ1 − µ0), we obtain that

ES2
Y (1)−Y (0) =

tr(P )

n− 1
Eξ21 = σ2

ε(1) + σ2
ε(0) + ∥O⊤(β1 − β0)∥22.

and

E|S2
Y (1)−Y (0) − ES2

Y (1)−Y (0)|
2 ≤ C(2)

(
Eξ41

)1/2 1

(n− 1)2

∑
i

∑
j

P 2
ij

= C(2)
(
Eξ41

)1/2
(n− 1)−2 = O(n−1).

Thus, by choosing cn5 =
[
E|S2

Y (1)−Y (0) − ES2
Y (1)−Y (0)|

2
]1/3

= o(1), we have that

P
(
|S2

Y (1)−Y (0) − ES2
Y (1)−Y (0)| ≥ cn5

)
≤ cn5 = o(1). (46)
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Plugging (45) and (46) into (44), we obtain that with probability 1− o(1),∣∣∣S2
diag{H},Y (1)−Y (0) − α

(
σ2
ε(1) + σ2

ε(0) + ∥O⊤(β1 − β0)∥22
)∣∣∣

< cn4

(
σ2
ε(1) + σ2

ε(0) + ∥O⊤(β1 − β0)∥22 + cn5

)
+ αcn5 = o(1).

(47)

Finally, combining (41), (43) and (47), we obtain that with probability 1− o(1),

S2
τ − S2

e(1)−e(0) − S2
diag{H},Y (1)−Y (0) > (1− α)∥O⊤(β1 − β0)∥22 + o(1) ≥ o(1).

The conclusion then follows.

Finally, we give the proof of Proposition 2.

Proof of Proposition 2. For simplicity of notations, we denote

W := n−1/2
(
V 1, · · · ,V n

)⊤
, P := I − 1

n
11⊤.

Then, we can write the matrix H as

H = PW
(
W⊤PW

)−1
W⊤P.

Now, we introduce a truncated matrix Ṽ = (Ṽ 1, . . . , Ṽ n)
⊤ as

Ṽij := 1 (|Vij | ≤ φn log n) · Vij , with φn := n
2

4+η , (48)

and denote W̃ := n−1/2
(
Ṽ 1, · · · , Ṽ n

)⊤
. Combining the moment bound maxj E|Vij |4+η < C with

Markov’s inequality, we obtain from a simple union bound that

P (Ṽ = V ) = 1− P
(
max
i,j

|Vij | > φn log n

)
= 1−O

(
(log n)−(4+η)

)
. (49)

By definition, we have

EṼij = −E [1 (|Vij | > φn log n)Vij ] ,

E|Ṽij |2 = 1− E
[
1 (|Vij | > φn log n) |Vij |2

]
.

(50)

Using the tail probability expectation formula, we can check that

E |1 (|Vij | > φn log n)Vij | =
∫ ∞

0
P (|1 (|Vij | > φn log n)Vij | > s) ds

=

∫ φn logn

0
P (|Vij | > φn log n) ds+

∫ ∞

φn logn
P (|Vij | > s) ds

≲
∫ φn logn

0
(φn log n)

−(4+η) ds+

∫ ∞

φn logn
s−(4+η)ds ≲ (φn log n)

−(3+η) .
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Here, for simplicity of notations, given two quantities an, bn depending on n, we have used an ≲ bn
to mean that |an| = O(|bn|). Similarly, we have

E |1 (|Vij | > φn log n)Vij |2 = 2

∫ ∞

0
sP (|1 (|Vij | > φn log n)Vij | > s) ds

= 2

∫ φn logn

0
sP (|Vij | > φn log n) ds+ 2

∫ ∞

φn logn
sP (|Vij | > s) ds

≲
∫ φn logn

0
s (φn log n)

−(4+η) ds+

∫ ∞

φn logn
s−(3+η)ds ≲ (φn log n)

−(2+η) .

From the above two estimates, we can derive that

|EṼij | ≤ n−3/2, E|Ṽij |2 = 1 +O(n−1), (51)

E∥Ṽ − V ∥2F =
∑
i,j

E |1 (|Vij | > φn log n)Vij |2 ≲ n
4

4+η (log n)−(2+η). (52)

As a consequence, we get that

∥EW̃∥F ≤ n−1/2
(∑

i,j

|EṼij |2
)1/2

≤ n−1, P
(
∥W̃ −W∥F ≥ n

− η
8+2η

)
= o(1). (53)

Let D be a p× p diagonal matrix with entries Dii = var(Ṽ1i), i ∈ [p]. By (51), we have

|Dii − 1| = O(n−1). (54)

Now, we introduce the matrices W := (W̃ − EW̃)D−1/2 and

H ′ = PW
(
W⊤PW

)−1W⊤P.

By definition and (54), the entries of W are independent random variables satisfying

EWij = 0, E|Wij |2 = n−1, |Wij | ≤
2φn log n

n1/2
, i ∈ [n], j ∈ [p]. (55)

Moreover, from (53), we see that

P
(
∥WD1/2 −W∥F ≥ 2n

− η
8+2η

)
= o(1). (56)

On the other hand, it is well-known that the empirical spectral distribution of WPW⊤ satisfies
the famous Marchenko-Pastur (MP) law [Marčenko and Pastur, 1967], and their eigenvalues are
all inside the support of the MP law, [(1 −

√
α)2, (1 +

√
α)2], with high probability [Bai and

Silverstein, 1998]. In particular, the following estimate is a direct consequence of the results in Bai
and Silverstein [1998]: for any small constant 0 < c < (1−

√
α)2,

P
(
(1−

√
α)2 − c ≤ λmin(W

⊤PW) ≤ λmax(W
⊤PW) ≤ (1 +

√
α)2 + c

)
= 1− o(1),

(57)
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where λmin and λmax denote the minimum and maximum eigenvalues, respectively. With (54), (56)
and (57), we obtain the following two estimates: there exists a constant C1 > 0 (depending on
lim supα) such that

P
(
C−1
1 ≤ λmin(W⊤PW) ≤ λmax(W⊤PW) ≤ C1

)
= 1− o(1), (58)

and
P
(
∥H ′ −H∥2 ≥ C1n

− η
8+2η

)
→ 0. (59)

Since |H ′
ii −Hii| ≤ ∥H ′ −H∥2, to conclude the proof, it suffices to show that

P
(
max
i∈[n]

|H ′
ii − α| > n−δ

)
→ 0 (60)

for any constant 0 < δ < η
8+2η .

Let εn = n−1/2. By (58), there exists a constant C2 > 0 such that

P
(
∥H ′ −Hε∥2 ≥ C2εn

)
= 1− o(1),

where Hε is defined as

Hε := PW 1

(W⊤P)(PW)− iεnI
W⊤P.

Observe the following matrix identity

Hε = 1 +
iεn

PWW⊤P− iεnI
.

Now, to conclude (60), it suffices to prove that

P
[∣∣∣∣( iεn

PWW⊤P− iεnI

)
ii

+ 1− α

∣∣∣∣ ≥ n−δ

]
≤ n−C (61)

for any constant 0 < δ < η
8+2η and large constant C > 1. Then, taking a simple union bound, we

obtain that

P
[
max
i∈[n]

∣∣∣∣( iεn

PWW⊤P− iεnI

)
ii

+ 1− α

∣∣∣∣ ≥ n−δ

]
≤ n−(C−1), (62)

which concludes (60).
For the proof of (61), we will adopt Theorem 11.2 of Knowles and Yin [2016]. More precisely,

under the conditions on W in (55), the following estimate was proved in Theorem 11.2 of Knowles
and Yin [2016]: for any small constant c > 0 and large constant C > 1,

P
(∣∣∣∣( iεn

PWW⊤P− iεnI

)
ii

−
(
m(iεn)P− 1

n
1n1

⊤
n

)
ii

∣∣∣∣ ≥ φn

n1/2−c

)
≤ n−C , (63)

where m(z) is the unique analytic function in a neighborhood around the origin that satisfies the
equation

−m(z) +
p

n

m(z)

m(z) + z
= 1.
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In particular, from this equation, we can solve that that

|m(iεn) + (1− α)| ≤ C3ε
−1
n (64)

for a constant C3 > 0. Plugging (64) into (63) and using
(
n−11n1

⊤
n

)
ii

= n−1, we obtain the
estimate (61), which concludes the proof.

Remark 1. An estimate of the form (63) is often called a local law of (PWW⊤P − zI)−1, the
Green’s function of PWW⊤P. Such local laws of sample covariance matrices were also established
in many other papers under different settings, see e.g., Bai et al. [2007], Bloemendal et al. [2014],
Bao et al. [2015], Ding and Yang [2018], Xi et al. [2020] (we remark that this list is far from
being comprehensive). The setting in Theorem 11.2 of Knowles and Yin [2016] is closest to our
current one, but there is a minor difference that |Wij | is of order O(n−1/2+ε) in Knowles and Yin
[2016]. However, using the argument in Ding and Yang [2018], it is rather straightforward to extend
Theorem 11.2 of Knowles and Yin [2016] to our setting with |Wij | ≤ φn logn

n1/2 in (55) and conclude
(63). We omit the details here.

H Additional numerical experiments

In this section, we conduct additional simulation analysis to examine the finite sample performance
of the proposed estimator and inference procedure. In the main text, we consider the setup that X
and ε̌(z) (which is used to generate the independent t residual) have i.i.d. entries from t distribution
with 3 degrees of freedom. Here, we consider 2 more setups:

• X and ε̌(z) have i.i.d. entries from Cauchy distribution

• X have i.i.d. entries from Cauchy distribution and ε̌(z) have i.i.d. entries from t distributions
with degrees of freedom 3. We also modify the model to

Yi(1) = µ1 + Scale(Trans(X⊤
i β1)) + εi(1)/

√
γ,

Yi(0) = µ0 + Scale(Trans(X⊤
i β0)) + εi(0)/

√
γ,

where for a finite population {ai}ni=1:

Trans(ai) = b(π(i)),

b(1) ≤ b(2) ≤ . . . ≤ b(n) is the ordered sequence of {bi}ni=1 with bi generated from t distribution
with degrees of freedom 3, and π(i) is the rank of ai.

For both setups, we consider the same factorial experiments regarding γ, δ, α, and the generating
models of εi(z). Note that the first setup represents the most challenging case in which Assump-
tion 2–3 fail. In the second setup, albeit with extremely heavy-tail covariates, the Assumption 2–3
hold. Figure 8–11 show the results for the first setup. Figure 12–15 show the results for the second
setup.

For the first setup, (τ̂hd, σ̂
2
hd,cb) outperforms its competitors in terms of relative RMSE, relative

bias, more reliable inference and shorter confidence intervals in all cases, except under the indepen-
dent t residual with γ = 3 and α ≤ 0.1. The performance of τ̂lin can be more catastrophic than in
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the main text when α is large. For example, the relative RMSE can be as large as 40. Interestingly,
although our asymptotic theory does not apply to these extreme regimes, in most of the cases
the relative RMSE and relative confidence interval length produced by our debiased estimator is
not too far away from 1. In other words, (τ̂hd, σ̂

2
hd,cb) does not give significant harm compared to

without covariate adjustment in these extreme setups. This demonstrates the robustness of our
method when faced with extreme cases.

For the second setup, τ̂hd outperforms other competitors for smaller relative bias and relative
RMSE under the worst-case residual. Although our theory only guarantees that our method has a
better estimation efficiency and a shorter confidence interval length than the unadjusted method
under a high signal-to-noise ratio and light-tailed covariates, it is interesting that we can observe
improved efficiency even with heavy-tailed covariates.

We notice that for both setups, when γ = 3, sometimes, τ̂hd,undb slightly outperforms τ̂hd in
terms of relative RMSE but with larger bias. Since under the worst-case residual, τ̂hd,undb has very
large relative RMSE, we still recommend using τ̂hd for heavy-tail covariates.
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Figure 8: The first set up. Relative bias for different choices of γ, δ and α under the worst-case
residual and independent t residual. The dashed lines signify 1. Notice that for the first figure, we
use a transformation of log10(1 + x) for the y-axis to adapt the curve display.
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Figure 9: The first set up. Relative RMSE for different choices of γ, δ and α under the worst-case
residual and independent t residual. The dashed lines signify 1. Notice that for both figures, we
use a transformation of log10(1 + x) for the y-axis to adapt the curve display.
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Figure 10: The first set up. Coverage probabilities for different choices of γ, δ and α under the
worst-case residual and independent t residual. The dashed lines signify 0.95.
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Figure 11: The first set up. Relative confidence interval length for different choices of γ, δ and α
under the worst-case residual and independent t residual. The dashed lines signify 1. Notice that
for both figures, we use a transformation of log10(1 + x) for the y-axis to adapt the curve display.
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Figure 12: The second set up. Relative bias for different choices of γ, δ and α under the worst-case
residual and independent t residual. The dashed lines signify 1. Notice that for both figures, we
use a transformation of log10(1 + x) for the y-axis to adapt the curve display.
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Figure 13: The second set up. Relative RMSE for different choices of γ, δ and α under the worst-
case residual and independent t residual. The dashed lines signify 1. Notice that for both figures,
we use a transformation of log10(1 + x) for the y-axis to adapt the curve display.
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Figure 14: The second set up. Coverage probabilities for different choices of γ, δ and α under the
worst-case residual and independent t residual. The dashed lines signify 0.95.
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Figure 15: The second set up. Relative interval length for different choices of γ, δ and α under the
worst-case residual and independent t residual. The dashed lines signify 1. Notice that for both
figures, we use a transformation of log10(1 + x) for the y-axis to adapt the curve display.
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