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ABSTRACT

With infinitely many high-quality data points, infinite computational power, an infinitely large foun-
dation model with a perfect training algorithm and guaranteed zero generalization error on the pre-
text task, can the model be used for everything? This question cannot be answered by the existing
theory of representation, optimization or generalization, because the issues they mainly investigate
are assumed to be nonexistent here. In this paper, we show that category theory provides powerful
machinery to answer this question. We have proved three results. The first one limits the power of
prompt-based learning, saying that the model can solve a downstream task with prompts if and only
if the task is representable. The second one says fine tuning does not have this limit, as a founda-
tion model with the minimum required power (up to symmetry) can theoretically solve downstream
tasks for the category defined by pretext task, with fine tuning and enough resources. Our final result
can be seen as a new type of generalization theorem, showing that the foundation model can gener-
ate unseen objects from the target category (e.g., images) using the structural information from the
source category (e.g., texts). Along the way, we provide a categorical framework for supervised and
self-supervised learning, which might be of independent interest.

1 Introduction

Foundation models have recently exhibited remarkable proficiency in addressing a myriad of complex downstream
tasks that were very difficult or impossible for the previous methods (Ramesh et al., 2021; Rombach et al., 2022;
Ramesh et al., 2022; Sohl-Dickstein et al., 2015; Brown et al., 2020; Radford et al., 2018, 2019; He et al., 2022). Be-
ing different in network structure, dataset and training algorithms, the foundation models are similar in terms of the
training process: the model is first trained with a large unlabeled dataset on a pretext task, and then being applied to
other downstream tasks with the parameters frozen. Freezing the parameter is necessary because training a foundation
model is very expensive, and the downstream tasks usually have limited data samples, which makes retraining less
attractive.

Given a set of downstream tasks, which of them are solvable by the foundation models, and which are not? This
is a very fundamental question. The existing theory attacks this question through various perspectives like dataset
quality and quantity, computational power, network structure, etc. However, as we collect trillions of data points, build
gigantic GPU data centers, and optimize huge networks with billions of parameters, a simple question just pops up:

Where are we heading to?

Specifically, with infinitely many high-quality data points, infinite computational power, an infinitely large foundation
model with a perfect training algorithm and guaranteed zero generalization error on the pretext task, can the model
be used for every downstream task? As we will see, this question is not about model representation, optimization or
generalization, but structural representation of the tasks. Category theory, as the theory of mathematical structures, is
the ideal tool for answering this question.

For the downstream tasks, there are mainly two types of methods: prompt tuning and fine tuning. Prompt tuning does
not train with the downstream tasks. Instead, it only sends a task specific prompt to the model, so that the model can

http://arxiv.org/abs/2211.16327v4


On the Power of Foundation Models

“switch” its working mode for solving the task. Fine tuning trains a small network connecting to the foundation model
with the labeled dataset for the downstream task.

In Theorem 1, we show that with prompt tuning, the model can solve the task if and only if the task is “representable”
in the category defined by the pretext task. If the category does not have complicated structures, our theorem indicates
that the power of prompt tuning is limited. For example, in Corollary 1, we show that by training with the pretext
task of predicting the rotation of an image Gidaris et al. (2018), the foundation model is not able to solve complicated
downstream tasks like segmentation or classification.

On the other hand, the results on fine tuning is more promising. Our Theorem 2 proves that for the foundation model
with the minimum required power (up to symmetry) for the pretext task and enough resources including training data,
it can potentially solve any downstream tasks for the category defined by pretext task. The role of pretext task is crucial
in the sense that if the pretext task fails to extract adequate information from the unlabeled dataset, the power of fine
tuning remains restricted.

Along the way, we have provided a categorical framework for machine learning. Interestingly, the framework injects
the learning perspective to category theory as well. Therefore, we also proved a generalization theorem for structural
learning (Theorem 3), which explains why self-supervised learning for text-image generation tasks can generate im-
ages like avocado chair, which do not exist in the dataset or real world. Theorem 3 can be easily generalized to the
compositional theorem of multiple categories, see Theorem 4.

Unlike most machine learning theory papers, our paper does not have any assumptions on the data distribution or
network structure. Instead, we take the bird’s-eye view that is model oblivious, and only focuses on the structure
defined by the pretext task. It is indeed possible that by designing a special network, one may get a more powerful
model with better performance. However, we stick with our setting because:

• Empirically, people do not customize network structures for different tasks. Instead, they tend to use sim-
ilar structures like ResNet He et al. (2016) or Transformer Vaswani et al. (2017). By the no free lunch theo-
rem Shalev-Shwartz and Ben-David (2014), if the model does not contain task-specific prior information, it will
not be able to completely solve all the tasks. In other words, the standard models are not universally competent, and
it is likely that the limitation that we derived from the model oblivious setting, also applies to the practical settings.

• Pretext task design is a central problem in self-supervised learning. Currently, there are various datasets floating
around, and a wide range of diverse tasks to solve, but the practitioners do not really know what kinds of pretext
tasks to pick for solving a given task, or the limitations of each pretrained model. They get the intuition by trial
and error with experiments, which are both expensive and noisy. Our framework will help them to think about this
problem in a more mathematical and systematic way, and provide guidance for better pretext task design.

2 Related Work

2.1 Self-supervised learning

Self-supervised learning. Recently, researchers have proposed many self-supervised learning algorithms for founda-
tion models, including contrastive methods (Chen et al., 2020; He et al., 2020; Grill et al., 2020; Chen and He, 2021;
Noroozi and Favaro, 2016; Zbontar et al., 2021), masked image models (He et al., 2022; Dosovitskiy et al., 2020;
Doersch et al., 2015; Pathak et al., 2016), masked language models (Devlin et al., 2018; Raffel et al., 2020), pure
language models (Brown et al., 2020; Radford et al., 2018, 2019), and with other pretext tasks (Oord et al., 2018;
Gidaris et al., 2018; Clark et al., 2020; Noroozi and Favaro, 2016; Pathak et al., 2017).

Multimodal learning. Self-supervised learning can also be applied to multimodal learning, including text +
image (Ramesh et al., 2021; Rombach et al., 2022; Ramesh et al., 2022; Sohl-Dickstein et al., 2015), video + au-
dio (Arandjelovic and Zisserman, 2018). For generating images for the multimodal tasks, diffusion model is the state-
of-the-art approach (Rombach et al., 2022; Sohl-Dickstein et al., 2015; Dhariwal and Nichol, 2021; Ho et al., 2020).

Prompt tuning. There are various prompt tuning methods, including the discrete prompts (Brown et al., 2020;
Jiang et al., 2020; Shin et al., 2020; Gao et al., 2020) and continuous prompts (Liu et al., 2021; Li and Liang, 2021).

2.2 Theory for deep learning and self-supervised learning

Theory for deep learning has been an active research area recently. Optimization theory focuses on how and why
first order methods like stochastic gradient descent finds the local/global optimum of the neural networks (Du et al.,
2019b; Arora et al., 2019a; Du et al., 2018; Allen-Zhu et al., 2019b,a; Zou et al., 2020; Li and Yuan, 2017). General-
ization theory focuses on how the performance of the model in the training set transfers to the population distribu-
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tion (Allen-Zhu et al., 2019a; Arora et al., 2019a; Bartlett et al., 2017, 2020; Yin et al., 2019). Representation theory
focuses on the representation power of the neural networks (Hornik et al., 1989; Cybenko, 1989; Raghu et al., 2017).
There are also theoretical results on analyzing various aspects of reinforcement learning (Du et al., 2019a,c; Jin et al.,
2018; Cai et al., 2020).

Theory for self-supervised learning. There are many interesting theory results for self-supervised learning learn-
ing (Wen and Li, 2021, 2022; Luo et al., 2022; HaoChen et al., 2021; Arora et al., 2019b; Tosh et al., 2021; Lee et al.,
2021; Zimmermann et al., 2021). For example, HaoChen et al. (2021) show that SimCLR is essentially computing
spectral graph clustering on the unlabeled dataset. Liu (2022) gives a better rectified flow algorithm with elegant
theoretical guarantees for improving the diffusion models.

Application of category theory. Category theory has been applied to many research areas (Fong and Spivak, 2018), in-
cluding physics (Marquis, 2008; Kuś and Skowron, 2019), design (Censi, 2015), and machine learning (Shiebler et al.,
2021; Mahadevan, 2022a,b). The most relevant paper on category theory might be Bradley et al. (2022), where they
provide an enriched category theory of natural language.

3 Preliminaries

Category theory is used in almost all areas of mathematics. Here we only introduce the necessary notions for under-
standing the results of our paper, and skip many important details (e.g., universe and diagram). Curious readers may
check Mac Lane (2013); Riehl (2017); Adámek et al. (1990) for more comprehensive introductions.

A category C has a set of objects Ob(C), and a set of morphisms HomC(X,Y ) from X to Y for every X,Y ∈ Ob(C).
Given f ∈ HomC(X,Y ), g ∈ HomC(Y, Z), we define their composition as g ◦ f ∈ HomC(X,Z). Notice that ◦
is associative, i.e., (h ◦ g) ◦ f = h ◦ (g ◦ f). For every X ∈ Ob(C), there exists an unique identity morphism
idX ∈ HomC(X,X). A morphism f : X → Y is an isomorphism if there exists g : X ← Y such that f ◦ g = idY

and g ◦ f = idX . In this case, we say X and Y are isomorphic and write X ≃ Y .

Given a category C, we define its opposite Cop by setting Ob(Cop) = Ob(C) and HomCop(X,Y ) = HomC(Y,X).

Moreover, given f ∈ HomCop(X,Y ), g ∈ HomCop(Y, Z), the new composition is g
op

◦ f = f ◦ g ∈ HomCop(X,Z).

We define Set to be the category of sets, where the objects are sets, and HomSet(X,Y ) is the set of all functions with
domain X and codomain Y . Notice that we ignore the subtleties about the universe for better presentation, so here
just assume that Set does not contain strange objects like a set containing all sets.

Functor is like a function between two categories. Given two categories C, C′, a functor F : C → C′ maps objects from
C to C′ with F : Ob(C) → Ob(C′) and morphisms from C to C′ with F : HomC(X,Y ) → HomC′(F (X), F (Y ))
for all X,Y ∈ C, so that F preserves identity and composition. Formally, we have F (idX) = idF (X) for all X ∈ C,

and F (g ◦ f) = F (g) ◦ F (f) for all f : X → Y, g : Y → Z . We call F an embedding functor, if it is injective
on morphisms. Notice that if F is an embedding, it is also injective on objects. We call F a full functor, if for any
X,Y ∈ C, HomC(X,Y )→ HomC′(FX,FY ) is surjective.

The morphisms of functors, also called the natural transformation, is the way to transform the functors while preserving
the structure. Given two categories C, C′, and two functors F1, F2 from C to C′. A morphism of functors θ : F1 → F2

has a morphism θX : F1(X) → F2(X) for all X ∈ C such that for all f : X → Y ∈ HomC(X,Y ), we have
θY (F1(f)(F1(X))) = F2(f)(θX(F1(X))). We write F1 ≃ F2 if there exists an isomorphism between F1 and F2.
A functor F : C → C′ is an isomorphism of categories if there exists G : C′ → C such that G ◦ F (X) = X and
F ◦G(Y ) = Y for all X ∈ C, Y ∈ C′, and similarly for the morphisms. In this case, we say C and C′ are isomorphic
and write C ≃ C′.

A categoryA is a subcategory of a category B, if

1. Ob(A) ⊆ Ob(B),

2. for each A,A′ ∈ Ob(A),HomA(A,A
′) ⊆ HomB(A,A

′),

3. for each A-object A, the B-identity on A is the A-identity on A;

4. the composition law in A is the restriction of the composition law in B to the morphisms of A.

Moreover, A is a full subcategory of B, if it is a subcategory of B and for each for each A,A′ ∈
Ob(A),HomA(A,A

′) = HomB(A,A
′). Every subcategory A of category B naturally defines an inclusion func-

tor E : A →֒ B, which is an embedding. For such embeddings, we have the following lemma.

Lemma 1 (Adámek et al. (1990)). A functorF : C → B is a full embedding if and only if there exists a full subcategory
A of B with inclusion functor E : A →֒ B and an isomorphism G : C → A with F = E ◦G.
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3.1 Reproducing Kernel Hilbert Space (RKHS)

Given two objects X,Y ∈ C, consider a feature map f : C → H, where the feature space H is usually much larger

than C. We may define a kernel k that measures the similarity of X and Y as k(x, y) , 〈f(x), f(y)〉H, i.e., the inner
product between the two object after mapping them to the feature space. For any vector T ∈ H, it also corresponds
to a function T (·) : C → R, defined as T (x) = 〈T, f(x)〉H. Specifically, f(y) as a vector in H also represents the
function k(·, y) : C → R, because for any x ∈ C, we have k(x, y) = 〈f(x), f(y)〉H. Formally, we have:

Definition 1 (Reproducing kernel Hilbert space). Let H be a Hilbert space of R-valued functions defined on a non-
empty set C. A function k : C × C → R is called a reproducing kernel of H, and H is a reproducing kernel Hilbert
space (RKHS), if k satisfies

• ∀x ∈ C, k(·, x) ∈ H,

• ∀x ∈ C, ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

4 Categorical Framework of Supervised Learning

In supervised learning, we have a population distribution D = (DX , DY ), representing the ground truth distribution
of the input and output data points. The training set (Xtrain, Ytrain) and test set (Xtest, Ytest) are uniformly sampled
from (DX , DY ). We hope to learn a function f : X → Y so that f(x) accurately predicts the label x ∈ X . We
also define a loss function L(f, x, y) to measure the distance between the prediction f(x) and the correct label, which

is hopefully close to 0. The loss function on a dataset (X,Y ) is L(f,X, Y ) , E(x,y)∼(X,Y )L(f, x, y). The task of

supervised learning, is to minimize the population loss Lpopulation , E(X,Y )∼(DX ,DY )L(f,X, Y ), with access of the

training set (Xtrain, Ytrain).

Using the language of category theory, we have two categories X and Y , with objects x, y as input and output data
points, respectively. To avoid confusion, below we switch notation from x, y to X,Y to represent the objects, as later
we will not use DX , DY any more. The population distribution can be seen as a functor F from X to Y , representing
the correct label Y given the input X . Due to the inherent noise in the real world, there may not always exist the unique
correct label for each input X . In other words, the Bayesian optimal solution does not give zero population loss. We
will discussion this issue in Section 7.3, and for now let us simply assume that the unique correct labels always exist.

With this formulation, training/test set can be seen as samples over objects in X with correct labels in Y . Therefore,
supervised learning investigates the following question: can we learn a functor F with samples of X ∈ X and
F (X) ∈ Y?

Consider the special case that both categories are discrete, meaning that the only morphisms existed are identity
morphisms like idX ∈ HomX (X,X) and idY ∈ HomY(Y, Y ). In other words, both categories are sets without
any morphisms between different objects. In this case, learning F is impossible, because it maps a set to another set
without any prior knowledge. The no free lunch theorem tells us that unless we have sample size larger than half of
the set size, the functor we learned will have constant generalization error with constant probability.

Generalization theory deals with this problem by assuming that F is in a predefined hypothesis class H, or close to
a function in H. In category theory, we do not add restrictions to the functors, but to the structure of the categories
instead. For example, if we know X has a linear structure, and F preserves the structure, it is possible to learn F with
a few samples.

This formulation seems useless, as it does not even characterize the loss function, which is crucial in supervised
learning. This is because category theory takes the bird’s-eye view. Our categorical framework will not replace
the classical framework, or generate better supervised learning algorithms. Instead, it treats the existing supervised
learning algorithms a subroutine or a building block, which can be incorporated into a bigger picture. Therefore, it
does not care about the loss functions or optimization process, which are treated as the implementation details. Instead,
it focuses on the structure of the categories and functors, and tries to understand whether certain functors are learnable
or not. It also investigates whether the ability of mastering at one or more tasks can be generalized to other tasks.

5 Categorical Framework of Self-supervised Learning

5.1 Pretext tasks and morphisms

In self-supervised learning, we have a population distribution D of data points without labels, and try to extract useful
information from D by setting up pretext tasks. As summarized in Section 2, there are different kinds of pretext tasks,
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including contrastive methods, masked image/language models, pure language models, etc. The model trained with
the pretext task can be seen as a feature extractor f ∈ D → H, mapping the input x to its feature representation f(x).

Using the language of category theory, we have a category C, where each object in C is a data point X ∈ D. For
X,Y ∈ C, HomC(X,Y ) is defined by the pretext task. More specifically, all the existing pretext tasks can be seen
as building morphisms between two objects in C:

• Contrastive methods. Contrastive methods like SimCLR (Chen et al., 2020) modify X ∈ C to get two semantically
similar copies X ′, X ′′ ∈ C as the positive pair, and pick another different Y ∈ C as the negative sample. The
pretext task says f(X ′), f(X ′′) should be close and both of them should be far away from f(Y ). It has been proved
that contrastive learning is doing spectral clustering on the similarity graph defined by the pretext task (Tan et al.,
2023; HaoChen et al., 2021). Specifically, the similarity graph is defined as for every two objects X,Y ∈ C, they
are connected with an edge HomC(X,Y ) of weight proportional to Pr((X,Y ) gets sampled as a positive pair).
Therefore, in this category, each morphism between two objects is just an edge connecting these objects, and can
be represented with a real number.

• Masked image/language models. For this kind of pretext tasks, we mask a portion of the full object and ask
the model to predict the masked part. We may treat the revealed part as X ∈ C, masks as Y ∈ C, and define
the morphism HomC(X,Y ) as the full object. For other pairs of objects, their morphisms are defined as empty
sets. Therefore, the pretext task defines a category of sub-objects, and the pretrained model can find the correct
complement for the given sub-object.

• Pure language models. Each object X ∈ C is a sentence of length at most1 N , and HomC(X,Y ) is the probability
that Y is a sentence successive to X that differs by the last token. For example, if X is “I am ”, Y can be “I am
happy”. See the detailed discussion in Section 7.2.

Now, we should formally define what we meant by an ideal foundation model.

5.2 Ideal foundation model

Definition 2 (Ideal foundation model). Given a category C defined by a pretext task, a foundation model f : C → H
is ideal, if there exists a data-oblivious function kf : H × H → Set so that for any X,Y ∈ C, kf (f(X), f(Y )) =
HomC(X,Y ).

Here, data-oblivious means kf is predefined without seeing the data, but the subscript f means kf as a predefined

function, can access f and f−1 as oracles. In other words, kf is a “simple” function, but can borrow the power
of foundation model f for expressing more complicated morphisms. Take the compression algorithms for example.
The compression algorithms can be data dependent, i.e., optimized for certain data distribution. However, as a data-
oblivious function kf , it cannot access the data distribution, but can call the compression algorithm to decompress the
data, because the action of calling an algorithm is data-oblivious. We define kf for different pretext tasks below.

• For contrastive methods, HomC(X,Y ) ∈ R, so H can be seen as the RKHS with kf as a kernel function. For
example, in SimCLR (Chen et al., 2020) and MoCo (He et al., 2020), kf is the Gaussian kernel for the two object
embeddings.

• For masked models, X is the revealed part, Y is the masks. In MAE (He et al., 2022), f(X) and f(Y ) are used for
encoding both revealed part and masks. Afterwards, kf concatenates f(X) and f(Y ), then run the decoder f−1(·)
to recover the full object.

• For pure language models, we want to compute Pr(Y |X) where Y and X differ by the last token. kf runs a

linear function2 and a softmax function to compute the probability distribution of the next token. Based on this
distribution, kf runs f−1(f(Y )) to extract Y , which determines Pr(Y |X).

In Definition 2, the ideal foundation model is not unique. Theoretically, it is possible that the model f has the general
intelligence, therefore can do everything even without learning the data in C. In this case, we can make no meaningful
arguments about the power of f . Therefore, we should look at the opposite side, and ask:

Is f guaranteed to have some property, if it is ideal with C defined by a pretext task?

This is the main motivation of our paper. Before moving forward, we would like to point out that Definition 2 does
not rule out the possibility that f simply memorizes all possible morphisms. The intuition is, the pretext task is so

1Length restriction is not important as the category can contain infinitely many objects.
2This linear function can be predefined with random initialization, without affect the empirical performance of the model.
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difficult, that even memorizing all the morphisms in C is already powerful enough. Moreover, a simple memorization
function will not have an efficient implementation empirically (although category theory does not care about the
implementation).

Below we first introduce an important notion called Yoneda embedding.

Definition 3 (Yoneda embedding hC). Given any X ∈ C, hC(X) , HomC(·, X), which takes input Y ∈ C and
outputs HomC(Y,X).

Define C∧ as the category of functors from Cop to Set, we have HomC(·, X) ∈ C∧ and hC : C → C∧. Notice that we
can define HomC(X, ·) similarly, which defines another kind of Yoneda embedding.

How do we represent C∧ empirically? To answer this question, we should first learn arguably the most important
theorem in category theory, as follows.

Lemma 2 (Yoneda lemma). For A ∈ C∧, and X ∈ C, HomC∧(hC(X), A) ≃ A(X).

In category theory, when two objects (or functors) are isomorphic, we treat them as equal. The technical details for
making them equal to each other is omitted, as we observe that this is not a problem for modern networks empirically.
For example, if there exists an isomorphism between two objects X and Y , so that φ(X) = Y , empirically a deep
neural network can easily fit this φ. More generally, techniques like rectified flow (Liu, 2022) can fit very complicated
isomorphisms between random noise and images, using neural network with ODE.

Similar to the RKHS, we assume that C∧ is a space H equipped with a function kf : H × H → Set, such that

HomC∧(hC(X), hC(Y )) , kf (hC(X), hC(Y )), where f = hC . Note that such C∧ always exists when hC is given.

For example, kf can first compute h−1
C (hC(X)) ≃ X , and then send it to hC(Y ) to get HomC(X,Y ), which is

isomorphic to HomC∧(hC(X), hC(Y )) by Lemma 2.

Intuitively, hC takes X and outputs all relationships of X , so we immediately have the following lemma.

Lemma 3. hC is ideal.

The next lemma says, hC is not only ideal, but with “the minimum power”, up to symmetry3.

Lemma 4. Given any other ideal foundation model f , all the morphisms in hC are also contained in f .

Proof. Since f gets all the pretext tasks correctly, and kf is data-oblivious, we know the morphism HomC(X,Y ) is
stored in f for every X,Y ∈ C. In other words, for every h ∈ HomC(X,Y ), either h ∈ f(X) or h ∈ f(Y ). Notice
that hC contains exactly all the morphisms of HomC(·, ·), we proved our lemma.

The above two lemmas tell us that we should work with hC , as it is the weakest ideal model.

5.3 Downstream tasks

After the model is trained, we apply it to the downstream tasks with two different approaches: prompt tuning and fine
tuning. In this section, we investigate the power of both approaches, with different outcomes. We first define what we
mean by solving a downstream task.

Definition 4 (Task). A task T is a functor in C∧.

Definition 5 (Task solving). We say the model solves a task T , if for any input X ∈ C, the model outputs a solution
that is isomorphic to T (X).

Given a task defined as a functor T ∈ C∧, prompt tuning means we freeze the parameters of the model, and only use a
task specific prompt P (usually in text or image), followed with the actual input of the task X , to get the output T (X).
Therefore, the prompt P and input X are the only two inputs to the model. By Lemma 2, if we directly send hC(X)
and T as a functor in C∧ to kf , we have

T (X) ≃ HomC∧(hC(X), T ) , kf (hC(X), T ) (1)

That is, kf can accurately compute T (X) with these two representations. However, notice that the prompt has to be
sent through hC before sending to kf , which means we will send hC(P ) instead of T for the input of kf . This brings
up another important definition in category theory.

3We say hC has the minimum power up to symmetry, because there are other foundation models that are equally powerful.
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Definition 6 (Representable functor). A functor T ∈ C∧ is representable if there is an isomorphism hC(X) ≃ T for
some X ∈ C. Such object X is called a representative of T .

Based on this definition, we have the following characterization of prompt tuning.

Theorem 1 (Power on prompt tuning). hC can solve T with prompt tuning, if and only if task T ∈ C∧ is representable.
When T is representable, the optimal prompt is the representative of T .

Proof. When the task T is representable, we can use its representative X as the prompt for T . By (1), we know hC

can solve T exactly.

On the other hand, if the task T is not representable, there exists no object X ∈ C such that hC(X) ≃ T . Therefore,
assume we use task specific prompt P , and get the representation hC(P ). Since hC(P ) 6≃ T , we can always find an
object Y ∈ C such that hC(P )(Y ) 6≃ T (Y ). In that case, our model using kf and hC cannot solve T on Y.

Remark. There are some interesting results on continuous prompts (Liu et al., 2021; Li and Liang, 2021), which
directly tunes the prompts in the feature space of the neural network, therefore the resulting prompt is not a represen-
tation of any real words/sentences. By doing this, it is possible to obtain more power than the representable tasks, but
the enhancement depends on the expressive power of the feature space. Below we provide a simple application of
Theorem 1.

Corollary 1. For the pretext task of predicting image rotations (Gidaris et al., 2018), prompt tuning cannot solve
complicated downstream tasks like segmentation or classification.

Proof. The pretext task of predicting image rotations will rotate a given image X ∈ C, by four different degrees: 0◦,
90◦, 180◦, and 270◦. Therefore, the four objects form a simple group of 4 elements. For any object X ∈ C, we know
HomC(·, X) contains exactly 4 morphisms. Clearly, tasks likes segmentation or classification are not representable by
objects in C.

Remark. The statement of Corollary 1 is a bit counter-intuitive, because as presented in Gidaris et al. (2018), the
model trained with the rotation pretext task indeed works for downstream tasks like classification and segmentation.
However, our definition of solving a task in Definition 2 means the model should generates correct output for every
input, so being partially accurate is not considered a success. This also matches with the goal of our paper: with
infinite resource, can rotation pretext task used for complicated downstream tasks? Corollary 1 gives the negative
answer.

Note that in Theorem 1 we consider the model with the minimum power, while empirically, the network structure may
contain prior knowledge like the convolutional layers for some specific downstream tasks. However, these prior knowl-
edge is inherently noisy and hard to characterize, therefore cannot be relied for completely solving the downstream
tasks.

The power of prompt tuning is limited, and can be characterized by representable functors. What about fine tuning?
In the case of fine tuning, we may use the Kan extension. However, the details of Kan extension is fairly abstract, so
here we only provide one related theorem:

Lemma 5 (Yoneda Extension of Functors). Let F : C → Set be any functor, then there exists an extension functor

h
†
CF : C∧ → Set such that h

†
CF ◦ hC ≃ F .

The actual Yoneda extension of functors theorem is more general (see e.g., Proposition 2.7.1 in Masaki Kashiwara
(2006)), it can be applied to any category A, but here we only use Set to avoid unnecessary technical details of
inductive limits. Using Lemma 5, we immediately get the following theorem.

Theorem 2 (Power on fine tuning). Ideally, given enough resources, hC can solve any task F : C → Set.

Proof. Applying Lemma 5, we know that with enough training data for the downstream task, computational power,

and a fine tuning model h that learns h
†
CF perfectly, we can concatenate h with f , to solve the task F .

The downstream tasks considered in Theorem 2 are based on the structure in C, not the data content in the dataset. As
a result, the category defined by Gidaris et al. (2018) still has very simple group-structure, but with Theorem 2 it is
possible to solve more diverse tasks. For example, we can map all the objects to the same output, which cannot be
achieved with prompt tuning. Theorem 2 conveys the importance of pretext task, as more informative pretext tasks
will create more structured category C, which further improves the power of fine tuning on C∧.
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Even with very informative C, Theorem 2 only provides a raw upper bound with strong assumptions on the resources
needed. By contrast, empirically the fine tuning step is usually done with a small network. Therefore, instead of
treating it as a strong backup of what people are doing right now, it is more like exhibiting the future possibility. In
other words, it implies that by transforming the objects to the corresponding feature space C∧, we have captured all
the information encoded in C.

For readers who are familiar with machine learning theory, Theorem 2 may look similar to the theory of over-
parameterization at the first glance. However, they are analyzing different steps of self-supervised learning. Over-
parameterization analyzes the pretraining step, saying that under certain assumptions, the optimization and general-
ization error will be very small for the pretext task, as long as the model is big enough and the learning rate is small
enough. By contrast, Theorem 2 analyzes the fine tuning step after pretraining. Even if we have successfully pretrained
a network on Imagenet with contrastive learning and zero generalization error, it remains unclear whether the model
can be used for image segmentation as the downstream task, unless someone verifies it empirically. But Theorem 2
says, as long as the model is ideal, the feature layer contains all the information of C for any downstream tasks.

6 Multimodal Learning

In the previous section, we have seen how the foundation models are related to learning a category defined by a pretext
task. What happens if we have multiple different categories? We can first use the pretext tasks to learn different foun-
dation models separately, then connect these models together in the embedding space. This is exactly how multimodal
models like CLIP Radford et al. (2021), Dall-E 2 Ramesh et al. (2022), Multilingual CLIP Carlsson et al. (2022) and
AltCLIP Chen et al. (2022) work.

In this section, we analyze the functors between different categories. Similar to the previous section, we consider the
case that the functors are perfectly learned, and investigate the implications under this assumption. This setting hides
unnecessary details like how loss is defined or how network structure is designed. However, it provides interesting
insights of how to connect different categories together, and what to expect after the functor connection.

As the starting point, we would like to emphasize that we assume the categories we consider are “natural”, which
means they are not only self consistent, but also consistent with each other. For example, when we use texts like
“white, red, blue” or “big, small, tiny” to describe a chair in the language category, there are corresponding images in
the image category. Such connection can be described by functors.

6.1 Generalization Theorem

We first assume that our functor from the embedding space learns the object mapping between the two categories
perfectly, then show the structural information will be preserved with this functor. Notice that below we still use the
notations of hB, hC and B∧, C∧ to denote the foundation models and the corresponding embedding spaces, but our
results hold for any other ideal foundation models and their embedding spaces as well.

Definition 7 (feature-aligned functor). Given two categories B, C, a full embedding F : C → B, denote the corre-

sponding foundation model as hB, hC . A function F̂ : C∧ → B∧ is feature-aligned with F if for any X ∈ Ob(C),

F̂ (hC(X)) ≃ hB(F (X)).

Theorem 3 (Generalization theorem for structural learning). Consider two categories B, C and a full embedding
F : C → B. In the learning scenario, an ideal foundation model hC for C together with a feature-aligned functor

F̂ : C∧ → B∧, preserves the structure of C in a full subcategory A of B: for any X,Y ∈ C, HomC(X,Y ) ≃

HomA∧(F̂ (hC(X)), F̂ (hC(Y ))). Moreover, when hB is available and invertible, we have F (X) ≃ h−1
B (F̂ (hC(X)))

for any X ∈ C.

Proof. By Lemma 1, there exists a full subcategory A of B with inclusion functor E, which is isomorphic to C with
functor G, and F = E ◦G. Therefore, for any X,Y ∈ C,

HomC(X,Y ) ≃ HomA(GX,GY ) = HomB(FX,FY )

=HomA(FX,FY ) ≃ HomA∧(hA(FX), hA(FY ))

=HomA∧(hB(FX), hB(FY ))

≃HomA∧(F̂ (hC(X)), F̂ (hC(Y )))

The first equality holds as G is isomorphic. The second equality holds because F is full. The third equality holds as
E maps the objects in A to the same objects in B. The fourth equality uses the Yoneda lemma. The fifth equality
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holds because A is a full subcategory. The last equality holds since F̂ is feature-aligned. If hB is invertible, we have

F (X) = h−1
B (hB(F (X))) ≃ h−1

B (F̂ (hC(X))).

Theorem 3 is much more powerful that it appears. We call it the generalization theorem, because it provides another
kind of generalization, different from the existing generalization theory on stability or Rademacher complexity. It tells
us that, the structural information of one category can be recovered in the feature space by the structural information
of another category with a feature-aligned functor.

6.2 Application of Theorem 3

In this subsection, we apply Theorem 3 to analyze two models: CLIP and Dall-E 2.

CLIP. The dataset of CLIP contains millions of (image, text) pairs. During pretraining, for each batch of N pairs of
data points, CLIP uses an image encoder and a text encoder to get N pairs of embeddings, and learns a function for
matching the N pairs out of N × N possible connections. Since the network used in CLIP is invertible, Theorem 3
immediately gives us the following corollary.

Corollary 2 (Creativity of CLIP). Let C be a category that describes images, which is a subcategory of language

category C′. Let B be the image category. Assume CLIP learns a feature-aligned functor F̂ : C∧ → B∧ for a full
embedding F , then CLIP is able to create new images that can be described in C, but do not existed in the training set.

Remark. Corollary 2 explains why CLIP can draw images like “avocado chair” that did not exist previously. The full
embedding assumption is crucial, otherwise the embedding computed in A∧ cannot be used for generating images in
B.

Dall-E 2. Dall-E 2 is the combination of Clip and the diffusion model (Rombach et al., 2022; Sohl-Dickstein et al.,
2015; Dhariwal and Nichol, 2021; Ho et al., 2020). If Clip can be seen as the feature-aligned functor between two
isomorphic subcategories, why do we need an extra diffusion model? This is because these two categories are not
purely isomorphic. When we type “a photo of dog”, there exists millions of different matching images. Therefore,
Dall-E2 modifies the definition of image category, so that each object is a probability distribution of images. From
this perspective, the diffusion model is a generator of images, while Clip learns the functor from the category of texts
to the category of probability distributions of images.

6.3 Compositional Theorem

By applying Theorem 3 multiples times through a list of categories, we immediately get the following theorem.

Theorem 4 (Compositional Theorem). Consider a list of categories {Bi}
n
i=1, and n − 1 full embeddings {Fi}

n−1
i=1 ,

where Fi : Ai → Bi+1, where A1 = B1, and for i > 1, Ai is the full subcategory of Bi induces by Fi−1. De-

note the foundation model for Bi as hBi
, and feature-aligned functors as {F̂i}

n−1
i=1 . Denote F , Fn−1Fn−2 · · ·F1

and F̂ , F̂n−1F̂n−2 · · · F̂1. By composing all the F̂is together, we preserve the structure of B1 in An: for

any X,Y ∈ C, HomB1
(X,Y ) = HomA∧

n
(F̂ (hB1

(X)), F̂ (hB1
(Y ))). Moreover, when hBn

is invertible, we have

F (X) = h−1
Bn

(F̂ (hC(X))) for any X ∈ C.

If we want to map objects from B1 and Bn, but the training data between the two categories is limited, Theorem 4
provides an alternative way. It suffices to find a path between the two categories, and learn the functors for each edge
of the path. This is especially useful when some of the categories are pretrained (like GPT or CLIP). For example,
Carlsson et al. (2022) and Chen et al. (2022) use multilingual text pairs to train the functors between various language
categories and the English category, which are further connected to the image category using CLIP. By doing that, they
easily extend CLIP to the multilingual settings.

7 Discussion

7.1 Applying to small categories

In our abstract and introduction, we raised the question about an infinitely large model with infinite resources, which
makes our theorem look unrealistic. However, these assumptions are purely rhetoric, and our real assumption is simply
the model being ideal, i.e., the model perfectly solves the pretext task. This assumption is much weaker than the infinite
one, because it means our theorems can be directly applied to small datasets, which correspond to smaller categories.
For instance, consider a dataset containing only 100k sentences, and a model is trained to learn the data using a
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language model where each sentence is connected to its neighboring sentences with certain probabilities. While the
sentences or words in the corresponding category C may not be as informative as the language category that humans
possess, it is well-defined, and the ideal model is also well-defined. Training an ideal model for a small dataset of this
scale is feasible. According to our Theorem 1, such model can only perfectly solve tasks that are representable in C.

7.2 Modeling probabilities

In this subsection, we provide the full definition of the category of language models. In our new category C, every
object X ∈ C is a probability measure µ on the space of sentences S of length at most N . when µ concentrates at a
single point s ∈ S, it means we have a deterministic sentence s. Otherwise, µ represents a probability distribution over
all possible sentences.

Given any sentence s1 = (w1, · · · , wN ), we will define a probability distribution ν on the next token wN+1, so that we
can define an object Y with the same probability measure on the sentences of concatenating (w2, · · · , wN ) to wN+1.
By defining X as the object contains single sentence s1, we have a morphism from X to Y . We call Y the canonical
successor of X , and its probability distribution (on length N sentences) the canonical successive measure of X .

Given any object Z ∈ C, assume Z has nonzero probabilities on various objects, like X1, · · · , Xn, with probability
measure µ. We define canonical successive distribution of Xi as νi. In this case, we define its canonical successive
distribution µ′ as:

µ′(s) =

∫
Xi

∫
s

dνi(s)dµ(Xi)

Intuitively, if s1 is the first sentence of a paragraph, we may use an object with measure concentrated at s1 to represent
it. However, due to the nature of natural language (not the dataset noise), the next word of s1 is not deterministic.
So we define s2 that drops the first word and adds the next word of s1, which should be represented as a probability
distribution (canonical successive distribution). What about the next word of s2? Without the realization of s1, we
have to enumerate all the possibilities of s1, and use the canonical successive distribution of each of them to define s2.
By doing so, we have defined a category with probabilities, where the pretext task defines its morphisms.

7.3 Bayesian optimal classifier

The notion of Bayesian optimal classifier is widely used in the generalization theory for supervised learning. It simply
means that due to the inherent noise in the labels, even the best model will not be able to get zero loss in the population
distribution. For example, given a blurry image of a dog, it might be difficult to tell its exact breed.

However, in our categorical framework, we take the physicist’s view of the world, and assume that all the objects
and relationships are self consistent, without any noises. For example, Alaskan Husky and Siberian Husky indeed
look similar from their photos, but they are fundamentally different breeds, in terms of their origins, size, appearance,
temperament and so on. Our framework models these conceptual differences, and treat the photos of the dogs (which
have noise) as the outcome of the last step of diffusion as discussed in Section 6. If the reader is familiar with the
functional programming, the categorical framework can be seen as the “pure functional” part, which is predictable and
precise. By contrast, the process that deals with the actual input and output, can be seen as the “side effects”, where
the notion of Bayesian optimal classifier comes in.

7.4 Relationship to RKHS

Our categorical framework can be seen as a natural generalization to the RKHS framework, where in RKHS a kernel
function outputs a value in R, and our framework generalizes it to Set.

For example, applying the Yoneda Lemma on RKHS, we get the property: ∀x ∈ C, ∀f ∈ H, 〈k(·, x), f〉H = f(x),
where f can be seen as a functor in C∧, k(·, x) is a representable functor, and 〈·, ·〉H computes HomC . Therefore in
RKHS, the morphisms between two objects are represented by a single real number computed by 〈·, ·〉H. This case
works perfectly for algorithms like SimCLR where the relationship between two objects is a real number representing
the similarity. However, in practice, the relationship between two objects can be much more than a real number,
especially for NLP tasks. In that case, RKHS is insufficient, and the general Yoneda lemma is necessary.

Acknowledgements

This paper was greatly inspired by the fruitful interactions with the Qianfang (functor) team at the Beijing Academy
of Artificial Intelligence. Special thanks are extended to Yue Cao and anonymous reviewers for their helpful dis-

10



On the Power of Foundation Models

cussions and suggestions. This paper is supported by the Ministry of Science and Technology of the People’s
Republic of China, the 2030 Innovation Megaprojects “Program on New Generation Artificial Intelligence” (Grant
No. 2021AAA0150000).

References

Adámek, J., Herrlich, H., and Strecker, G. (1990). Abstract and concrete categories. Wiley-Interscience.

Allen-Zhu, Z., Li, Y., and Liang, Y. (2019a). Learning and generalization in overparameterized neural networks, going
beyond two layers. Advances in neural information processing systems, 32.

Allen-Zhu, Z., Li, Y., and Song, Z. (2019b). A convergence theory for deep learning via over-parameterization. In
International Conference on Machine Learning, pages 242–252. PMLR.

Arandjelovic, R. and Zisserman, A. (2018). Objects that sound. In Proceedings of the European conference on
computer vision (ECCV), pages 435–451.

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. (2019a). Fine-grained analysis of optimization and generalization for
overparameterized two-layer neural networks. In International Conference on Machine Learning, pages 322–332.
PMLR.

Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., and Saunshi, N. (2019b). A theoretical analysis of contrastive
unsupervised representation learning. arXiv preprint arXiv:1902.09229.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for neural networks.
Advances in neural information processing systems, 30.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. (2020). Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070.

Bradley, T.-D., Terilla, J., and Vlassopoulos, Y. (2022). An enriched category theory of language: from syntax to
semantics. La Matematica, pages 1–30.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. (2020). Provably efficient exploration in policy optimization. In International
Conference on Machine Learning, pages 1283–1294. PMLR.

Carlsson, F., Eisen, P., Rekathati, F., and Sahlgren, M. (2022). Cross-lingual and multilingual clip. In Proceedings of
the Thirteenth Language Resources and Evaluation Conference, pages 6848–6854.

Censi, A. (2015). A mathematical theory of co-design. arXiv preprint arXiv:1512.08055.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning of visual
representations. In International conference on machine learning, pages 1597–1607. PMLR.

Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15750–15758.

Chen, Z., Liu, G., Zhang, B.-W., Ye, F., Yang, Q., and Wu, L. (2022). Altclip: Altering the language encoder in clip
for extended language capabilities. arXiv preprint arXiv:2211.06679.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint arXiv:2003.10555.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794.

11



On the Power of Foundation Models

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual representation learning by context prediction.
In Proceedings of the IEEE international conference on computer vision, pages 1422–1430.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik, M., and Langford, J. (2019a). Provably efficient rl with
rich observations via latent state decoding. In International Conference on Machine Learning, pages 1665–1674.
PMLR.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. (2019b). Gradient descent finds global minima of deep neural networks.
In International conference on machine learning, pages 1675–1685. PMLR.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. (2019c). Is a good representation sufficient for sample efficient
reinforcement learning? arXiv preprint arXiv:1910.03016.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054.

Fong, B. and Spivak, D. I. (2018). Seven sketches in compositionality: An invitation to applied category theory. arXiv
preprint arXiv:1803.05316.

Gao, T., Fisch, A., and Chen, D. (2020). Making pre-trained language models better few-shot learners. arXiv preprint
arXiv:2012.15723.

Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised representation learning by predicting image rotations.
arXiv preprint arXiv:1803.07728.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances
in neural information processing systems, 33:21271–21284.

HaoChen, J. Z., Wei, C., Gaidon, A., and Ma, T. (2021). Provable guarantees for self-supervised deep learning with
spectral contrastive loss. Advances in Neural Information Processing Systems, 34:5000–5011.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). Masked autoencoders are scalable vision learners.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16000–16009.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9729–
9738.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators.
Neural networks, 2(5):359–366.

Hou, Z., Sun, F., Chen, Y.-K., Xie, Y., and Kung, S.-Y. (2022). Milan: Masked image pretraining on language assisted
representation.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. (2020). How can we know what language models know? Transactions
of the Association for Computational Linguistics, 8:423–438.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018). Is q-learning provably efficient? Advances in neural
information processing systems, 31.
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