选择语言
< 返回主菜单
wuyi.jpg

吴翼

上海期智研究院PI(2020年7月-至今)
清华大学特别研究员、助理教授

个人简介

吴翼,2019年于加州大学伯克利分校获博士学位,导师为Stuart Russell教授,毕业后曾任美国OpenAI公司研究员。吴翼的研究方向为提高AI系统的泛化性能。其研究成果涉及AI领域中的多个方面,包括深度强化学习,多智能体系统和自然语言理解。其论文,Value Iteration Network, 曾获机器学习顶级会议NIPS2016最佳论文奖。

研究方向

多智能体强化学习

人机交互

分布式强化学习系统

自然语言理解与交互


研究课题

人工智能-泛化与自适应性的人工智能系统

人工智能-大规模通用深度强化学习算法平台

团队成员

招聘信息

研究方向:

人机交互领域:自然语言理解,大模型,强化学习

机器人学习领域:机器人,强化学习,计算机视觉

岗位职责:

1.负责上述相关领域和方向的理论研究、算法或系统开发;

2.在上述相关领域发表学术成果或创新型研究成果。

任职资格:

1.计算机、电子、自动化、软件和物理等相关专业背景,学术能力强;

2.具备优秀的领域内理论基础知识和编程功底(Python、Linux、C++等);

很强的自我驱动能力,愿意学习领域前沿内容

简历投递:

wuyi@sqz.ac.cn


新闻动态

科研成果

1. Rui Zhao, Jinming Song, Yufeng Yuan, Hu Haifeng, Yang Gao,Yi Wu, Zhongqian Sun, Yang Wei,Maximum Entropy Population-Based Training for Zero-Shot Human-AI Coordination,2023 Association for the Advance of Artificial Intelligence(AAAI 2023).


2. Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, Yi Wu,The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games,2022 Conference on Neural Information Processing Systems (NeurIPS 2022).


3. Shusheng Xu, Huaijie Wang,Yi Wu,Grounded Reinforcement Learning: Learning to Win the Game under Human Commands,2022 Conference on Neural Information Processing Systems (NeurIPS 2022).


4. Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, Huazhe Xu,Pre-Trained Image Encoder for Generalizable Visual Reinforcement Learning,2022 Conference on Neural Information Processing Systems (NeurIPS 2022).


5. Chao Yu, Xinyi Yang, Jiaxuan Gao, Huazhong Yang, Yu Wang, Yi Wu,Learning Efficient Multi-Agent Cooperative Visual Exploration,2022 European Conference on Computer Vision(ECCV 2022).


6. Yunfei Li, Tian Gao, Jiaqi Yang, Huazhe Xu, Yi Wu,Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning, 2022 International Conference on Machine Learning(ICML 2022).


7. Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, Yi Wu,Revisiting Some Common Practices in Cooperative Multi-Agent Reinforcement Learning, 2022 International Conference on Machine Learning(ICML 2022).


8. Zihan Zhou, Wei Fu, Bingliang Zhang, Yi Wu,Continuously Discovering Novel Strategies via Reward-Switching Policy Optimization,2022 International Conference on Learning Representations(ICLR 2022).


9. Yunfei Li, Tao Kong, Lei Li, Yi Wu,Learning Design and Construction with Varying-Sized Materials via Prioritized Memory Resets, International Conference on Robotics and Automation(ICRA 2022).


10. Shusheng Xu, Xingxing Zhang, Yi Wu, Furu Wei,Sequence Level Contrastive Learning for Text Summarization,2022 Association for the Advance of Artificial Intelligence(AAAI 2022).


11. Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang, Jiaming Song, Yu Wang,Yi Wu,Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems,2021 Conference on Neural Information Processing Systems (NeurIPS 2021).


12. Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, Yuandong Tian,NovelD: A Simple yet Effective Exploration Criterion,2021 Conference on Neural Information Processing Systems (NeurIPS 2021).


13. Shusheng Xu, Yichen Liu, Xiaoyu Yi, Siyuan Zhou, Huizi Li, Yi Wu,Native Chinese Reader: A Dataset Towards Native-Level Chinese Machine Reading Comprehension,2021 Conference on Neural Information Processing Systems (NeurIPS 2021).


14. Yunfei Li, Tao Kong, Lei Li, Yifeng LI, Yi Wu, Learning to Design and Construct Bridge without Blueprint, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021).


15. Weizhe Chen, Zihan Zhou, Yi Wu, Fei Fang, Temporal Induced Self-Play for Stochastic Bayesian Games, 30th International Joint Conference on Artificial Intelligence (IJCAI 2021).


16. Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu, Discovering Diverse Multi-Agent Strategic Behavior via Reward Randomization, 2021 International Conference on Learning Representations (ICLR 2021).


17. Yunfei Li, Yilin Wu, Huazhe Xu, Xiaolong Wang, Yi Wu, Solving Compositional Reinforcement Learning Problems via Task Reduction, 2021 International Conference on Learning Representations (ICLR 2021).


18. Ruihan Yang, Huazhe Xu, Yi Wu, Xiaolong Wang, Multi-Task Reinforcement Learning with Soft Modularization, 2021 Conference on Neural Information Processing Systems (NeurIPS 2021).


19. Shusheng Xu, Xingxing Zhang, Yi Wu, Furu Wei, Ming Zhou,Unsupervised Extractive Summarization by Pre-training Hierarchical Transformers, The 2020 Conference on Empirical Methods in Natural Language Processing,2020 Conference on Empirical Methods in Natural Language Processing(EMNLP 2020).